Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Вивчайте Challenge: Preprocessing Pipeline | Section
Data Preprocessing and Feature Engineering

bookChallenge: Preprocessing Pipeline

Завдання

Swipe to start coding

You are given the Titanic dataset from the seaborn library. Your task is to build a complete preprocessing pipeline that performs all essential data transformations used before machine learning.

Follow these steps:

  1. Load the dataset using sns.load_dataset("titanic").
  2. Handle missing values:
    • Numeric columns → fill with mean.
    • Categorical columns → fill with mode.
  3. Encode the categorical features sex and embarked using pd.get_dummies().
  4. Scale numeric columns age and fare using StandardScaler.
  5. Create a new feature family_size = sibsp + parch + 1.
  6. Combine all transformations into a function called preprocess_titanic(data) that returns the final processed DataFrame.
  7. Assign the processed dataset to a variable called processed_data.

Print the first 5 rows of the final DataFrame.

Рішення

Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 1. Розділ 12
single

single

Запитати АІ

expand

Запитати АІ

ChatGPT

Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат

close

bookChallenge: Preprocessing Pipeline

Свайпніть щоб показати меню

Завдання

Swipe to start coding

You are given the Titanic dataset from the seaborn library. Your task is to build a complete preprocessing pipeline that performs all essential data transformations used before machine learning.

Follow these steps:

  1. Load the dataset using sns.load_dataset("titanic").
  2. Handle missing values:
    • Numeric columns → fill with mean.
    • Categorical columns → fill with mode.
  3. Encode the categorical features sex and embarked using pd.get_dummies().
  4. Scale numeric columns age and fare using StandardScaler.
  5. Create a new feature family_size = sibsp + parch + 1.
  6. Combine all transformations into a function called preprocess_titanic(data) that returns the final processed DataFrame.
  7. Assign the processed dataset to a variable called processed_data.

Print the first 5 rows of the final DataFrame.

Рішення

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 1. Розділ 12
single

single

some-alt