Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Вивчайте Challenge: Estimate Parameters of Chi-square Distribution | Estimation of Population Parameters
Advanced Probability Theory

Свайпніть щоб показати меню

book
Challenge: Estimate Parameters of Chi-square Distribution

Завдання

Swipe to start coding

Suppose that we have samples from the Chi-square distribution. We must determine the parameter K of this distribution, which represents the number of degrees of freedom.
We know that the mathematical expectation of the Chi-square distributes value is equal to this parameter K.
Estimate this parameter using the method of moments and the maximum likelihood method. Since the number of degrees of freedom can only be discrete, round the resulting number to the nearest integer.
Your task is:

  1. Calculate the mean value over samples using .mean() method.
  2. Use .fit() method to get maximum likelihood estimation for the parameter.

Рішення

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 3. Розділ 3
Ми дуже хвилюємося, що щось пішло не так. Що трапилося?

Запитати АІ

expand
ChatGPT

Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат

book
Challenge: Estimate Parameters of Chi-square Distribution

Завдання

Swipe to start coding

Suppose that we have samples from the Chi-square distribution. We must determine the parameter K of this distribution, which represents the number of degrees of freedom.
We know that the mathematical expectation of the Chi-square distributes value is equal to this parameter K.
Estimate this parameter using the method of moments and the maximum likelihood method. Since the number of degrees of freedom can only be discrete, round the resulting number to the nearest integer.
Your task is:

  1. Calculate the mean value over samples using .mean() method.
  2. Use .fit() method to get maximum likelihood estimation for the parameter.

Рішення

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 3. Розділ 3
Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Ми дуже хвилюємося, що щось пішло не так. Що трапилося?
some-alt