Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Challenge: Using CLT to Compare Mean Values of Non-Gaussian Datasets | Testing of Statistical Hypotheses
Advanced Probability Theory
course content

Зміст курсу

Advanced Probability Theory

Advanced Probability Theory

1. Additional Statements From The Probability Theory
2. The Limit Theorems of Probability Theory
3. Estimation of Population Parameters
4. Testing of Statistical Hypotheses

bookChallenge: Using CLT to Compare Mean Values of Non-Gaussian Datasets

In the last chapter, we considered how to compare the mathematical expectations of two Gaussian datasets. But what if the datasets are not Gaussian, and is it possible to somehow compare them in this case?

Using Central Limit Theorem to compare mean values

We can use the CLT to compare mean values of non-Gaussian datasets:

  1. If we have many samples, we can use the CLT to construct new features: instead of analyzing samples, we can analyze the mean values of the samples. Due to CLT, if we calculate the mean with many samples, this mean value will be normally distributed;
  2. Use the Student criterion described in the previous chapter to test the hypothesis.

Note

For different distributions, you need to select a different number of samples for which the average is calculated to achieve normality. This is usually done experimentally using various tests for normality, for example, shapiro normality test.

Завдання

Now we will check the hypothesis that two exponential datasets have equal mean values using the Central Limit Theorem. Your task is:

  1. Import ttest_ind function from scipy.stats module to provide t-test.
  2. Use .mean() method to calculate the mean over the sliding window in sliding_mean function.
  3. Use shapiro() function to check normality of X_mean array.
  4. Specify condition in if statement to check hypothesis.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 4. Розділ 4
toggle bottom row

bookChallenge: Using CLT to Compare Mean Values of Non-Gaussian Datasets

In the last chapter, we considered how to compare the mathematical expectations of two Gaussian datasets. But what if the datasets are not Gaussian, and is it possible to somehow compare them in this case?

Using Central Limit Theorem to compare mean values

We can use the CLT to compare mean values of non-Gaussian datasets:

  1. If we have many samples, we can use the CLT to construct new features: instead of analyzing samples, we can analyze the mean values of the samples. Due to CLT, if we calculate the mean with many samples, this mean value will be normally distributed;
  2. Use the Student criterion described in the previous chapter to test the hypothesis.

Note

For different distributions, you need to select a different number of samples for which the average is calculated to achieve normality. This is usually done experimentally using various tests for normality, for example, shapiro normality test.

Завдання

Now we will check the hypothesis that two exponential datasets have equal mean values using the Central Limit Theorem. Your task is:

  1. Import ttest_ind function from scipy.stats module to provide t-test.
  2. Use .mean() method to calculate the mean over the sliding window in sliding_mean function.
  3. Use shapiro() function to check normality of X_mean array.
  4. Specify condition in if statement to check hypothesis.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 4. Розділ 4
toggle bottom row

bookChallenge: Using CLT to Compare Mean Values of Non-Gaussian Datasets

In the last chapter, we considered how to compare the mathematical expectations of two Gaussian datasets. But what if the datasets are not Gaussian, and is it possible to somehow compare them in this case?

Using Central Limit Theorem to compare mean values

We can use the CLT to compare mean values of non-Gaussian datasets:

  1. If we have many samples, we can use the CLT to construct new features: instead of analyzing samples, we can analyze the mean values of the samples. Due to CLT, if we calculate the mean with many samples, this mean value will be normally distributed;
  2. Use the Student criterion described in the previous chapter to test the hypothesis.

Note

For different distributions, you need to select a different number of samples for which the average is calculated to achieve normality. This is usually done experimentally using various tests for normality, for example, shapiro normality test.

Завдання

Now we will check the hypothesis that two exponential datasets have equal mean values using the Central Limit Theorem. Your task is:

  1. Import ttest_ind function from scipy.stats module to provide t-test.
  2. Use .mean() method to calculate the mean over the sliding window in sliding_mean function.
  3. Use shapiro() function to check normality of X_mean array.
  4. Specify condition in if statement to check hypothesis.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

In the last chapter, we considered how to compare the mathematical expectations of two Gaussian datasets. But what if the datasets are not Gaussian, and is it possible to somehow compare them in this case?

Using Central Limit Theorem to compare mean values

We can use the CLT to compare mean values of non-Gaussian datasets:

  1. If we have many samples, we can use the CLT to construct new features: instead of analyzing samples, we can analyze the mean values of the samples. Due to CLT, if we calculate the mean with many samples, this mean value will be normally distributed;
  2. Use the Student criterion described in the previous chapter to test the hypothesis.

Note

For different distributions, you need to select a different number of samples for which the average is calculated to achieve normality. This is usually done experimentally using various tests for normality, for example, shapiro normality test.

Завдання

Now we will check the hypothesis that two exponential datasets have equal mean values using the Central Limit Theorem. Your task is:

  1. Import ttest_ind function from scipy.stats module to provide t-test.
  2. Use .mean() method to calculate the mean over the sliding window in sliding_mean function.
  3. Use shapiro() function to check normality of X_mean array.
  4. Specify condition in if statement to check hypothesis.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Секція 4. Розділ 4
Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
some-alt