Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Challenge: Estimate Mean Value Using Law of Large Numbers | The Limit Theorems of Probability Theory
Advanced Probability Theory
course content

Зміст курсу

Advanced Probability Theory

Advanced Probability Theory

1. Additional Statements From The Probability Theory
2. The Limit Theorems of Probability Theory
3. Estimation of Population Parameters
4. Testing of Statistical Hypotheses

bookChallenge: Estimate Mean Value Using Law of Large Numbers

Завдання

Assume that we have some data samples: we know these samples are independent and identically distributed, but we do not know the characteristics.

Your task is to use the law of large numbers to estimate the expected value of these samples.
We will also try to check the assumption that our data has exponential distribution: we will build a histogram based on our data and compare it with the real PDF of the exponential distribution.

Note

Visualization cannot prove that the data is distributed in a certain way. For this, it is necessary to use statistical tests, which will be considered in the last section of this course; however, with the help of visualization, we can at least roughly determine which class of distributions our data belongs to.

Your task is to:

  1. Plot histogram using .hist() method of matplotlib.pyplot module.
  2. Calculate the mean over a given subsample in mean_value function using .mean() method.
  3. Pass exp_samples as an argument of a function to calculate mean values over all subsamples.
  4. Print the estimated mean value of all samples as the last value of y array.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 2. Розділ 3
toggle bottom row

bookChallenge: Estimate Mean Value Using Law of Large Numbers

Завдання

Assume that we have some data samples: we know these samples are independent and identically distributed, but we do not know the characteristics.

Your task is to use the law of large numbers to estimate the expected value of these samples.
We will also try to check the assumption that our data has exponential distribution: we will build a histogram based on our data and compare it with the real PDF of the exponential distribution.

Note

Visualization cannot prove that the data is distributed in a certain way. For this, it is necessary to use statistical tests, which will be considered in the last section of this course; however, with the help of visualization, we can at least roughly determine which class of distributions our data belongs to.

Your task is to:

  1. Plot histogram using .hist() method of matplotlib.pyplot module.
  2. Calculate the mean over a given subsample in mean_value function using .mean() method.
  3. Pass exp_samples as an argument of a function to calculate mean values over all subsamples.
  4. Print the estimated mean value of all samples as the last value of y array.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 2. Розділ 3
toggle bottom row

bookChallenge: Estimate Mean Value Using Law of Large Numbers

Завдання

Assume that we have some data samples: we know these samples are independent and identically distributed, but we do not know the characteristics.

Your task is to use the law of large numbers to estimate the expected value of these samples.
We will also try to check the assumption that our data has exponential distribution: we will build a histogram based on our data and compare it with the real PDF of the exponential distribution.

Note

Visualization cannot prove that the data is distributed in a certain way. For this, it is necessary to use statistical tests, which will be considered in the last section of this course; however, with the help of visualization, we can at least roughly determine which class of distributions our data belongs to.

Your task is to:

  1. Plot histogram using .hist() method of matplotlib.pyplot module.
  2. Calculate the mean over a given subsample in mean_value function using .mean() method.
  3. Pass exp_samples as an argument of a function to calculate mean values over all subsamples.
  4. Print the estimated mean value of all samples as the last value of y array.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Завдання

Assume that we have some data samples: we know these samples are independent and identically distributed, but we do not know the characteristics.

Your task is to use the law of large numbers to estimate the expected value of these samples.
We will also try to check the assumption that our data has exponential distribution: we will build a histogram based on our data and compare it with the real PDF of the exponential distribution.

Note

Visualization cannot prove that the data is distributed in a certain way. For this, it is necessary to use statistical tests, which will be considered in the last section of this course; however, with the help of visualization, we can at least roughly determine which class of distributions our data belongs to.

Your task is to:

  1. Plot histogram using .hist() method of matplotlib.pyplot module.
  2. Calculate the mean over a given subsample in mean_value function using .mean() method.
  3. Pass exp_samples as an argument of a function to calculate mean values over all subsamples.
  4. Print the estimated mean value of all samples as the last value of y array.

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Секція 2. Розділ 3
Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
some-alt