Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Вивчайте Challenge: Summarize Election Results | Data Collection and Cleaning for Journalists
Python for Journalists and Media

bookChallenge: Summarize Election Results

Election coverage often requires you to quickly analyze and summarize large amounts of voting data. As a journalist, you need to identify winners, trends, and turnout patterns to inform your audience. By using Python and pandas, you can efficiently process raw election results and generate clear, accurate reports that highlight the most important outcomes.

123456789101112131415161718192021222324
import pandas as pd # Example DataFrame: Election results by precinct data = { "precinct": ["A", "A", "B", "B", "C", "C"], "candidate": ["Smith", "Jones", "Smith", "Jones", "Smith", "Jones"], "votes": [120, 80, 150, 100, 130, 90], "turnout": [200, 200, 250, 250, 220, 220] } df = pd.DataFrame(data) # Calculate total votes for each candidate total_votes = df.groupby("candidate")["votes"].sum() print("Total votes for each candidate:") print(total_votes) # Determine the candidate with the most votes winner = total_votes.idxmax() winner_votes = total_votes.max() print(f"Winner: {winner} with {winner_votes} votes") # Calculate average voter turnout per precinct avg_turnout = df.groupby("precinct")["turnout"].first().mean() print(f"Average voter turnout per precinct: {avg_turnout:.2f}")
copy

These grouping and aggregation techniques are essential tools for journalists. They allow you to condense complex election datasets into clear, digestible summaries. By quickly identifying total votes, winners, and turnout averages, you can report key findings to your audience with confidence and speed, even when working under tight deadlines.

Завдання

Swipe to start coding

Write a function that takes a predefined DataFrame and does the following:

  • Calculate total votes for each candidate.
  • Identify the candidate with the highest votes.
  • Calculate the average voter turnout per precinct.
  • Print a clear summary report with these results.

Рішення

Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 1. Розділ 7
single

single

Запитати АІ

expand

Запитати АІ

ChatGPT

Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат

close

bookChallenge: Summarize Election Results

Свайпніть щоб показати меню

Election coverage often requires you to quickly analyze and summarize large amounts of voting data. As a journalist, you need to identify winners, trends, and turnout patterns to inform your audience. By using Python and pandas, you can efficiently process raw election results and generate clear, accurate reports that highlight the most important outcomes.

123456789101112131415161718192021222324
import pandas as pd # Example DataFrame: Election results by precinct data = { "precinct": ["A", "A", "B", "B", "C", "C"], "candidate": ["Smith", "Jones", "Smith", "Jones", "Smith", "Jones"], "votes": [120, 80, 150, 100, 130, 90], "turnout": [200, 200, 250, 250, 220, 220] } df = pd.DataFrame(data) # Calculate total votes for each candidate total_votes = df.groupby("candidate")["votes"].sum() print("Total votes for each candidate:") print(total_votes) # Determine the candidate with the most votes winner = total_votes.idxmax() winner_votes = total_votes.max() print(f"Winner: {winner} with {winner_votes} votes") # Calculate average voter turnout per precinct avg_turnout = df.groupby("precinct")["turnout"].first().mean() print(f"Average voter turnout per precinct: {avg_turnout:.2f}")
copy

These grouping and aggregation techniques are essential tools for journalists. They allow you to condense complex election datasets into clear, digestible summaries. By quickly identifying total votes, winners, and turnout averages, you can report key findings to your audience with confidence and speed, even when working under tight deadlines.

Завдання

Swipe to start coding

Write a function that takes a predefined DataFrame and does the following:

  • Calculate total votes for each candidate.
  • Identify the candidate with the highest votes.
  • Calculate the average voter turnout per precinct.
  • Print a clear summary report with these results.

Рішення

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 1. Розділ 7
single

single

some-alt