Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Вивчайте Forward Propagation | Neural Network from Scratch
Introduction to Neural Networks
course content

Зміст курсу

Introduction to Neural Networks

Introduction to Neural Networks

1. Concept of Neural Network
2. Neural Network from Scratch
3. Conclusion

book
Forward Propagation

You have already implemented forward propagation for a single layer in the previous chapter. Now, the goal is to implement complete forward propagation, from inputs to outputs.

To implement the entire forward propagation process, you need to define the forward() method in the Perceptron class. This method performs forward propagation layer by layer by calling the respective method for each layer:

The inputs pass through the first hidden layer, with each layer's outputs serving as inputs for the next, until reaching the final layer to produce the final output.

Завдання

Swipe to start coding

Your goal is to implement forward propagation for the perceptron:

  1. Iterate over the layers of the perceptron.
  2. Pass x through each layer in the network sequentially.
  3. Return the final output after all layers have processed the input.

If the forward() method is implemented correctly, the perceptron should output a single number between 0 and 1 when given certain inputs (e.g, [1, 0]).

Рішення

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 2. Розділ 5
toggle bottom row

book
Forward Propagation

You have already implemented forward propagation for a single layer in the previous chapter. Now, the goal is to implement complete forward propagation, from inputs to outputs.

To implement the entire forward propagation process, you need to define the forward() method in the Perceptron class. This method performs forward propagation layer by layer by calling the respective method for each layer:

The inputs pass through the first hidden layer, with each layer's outputs serving as inputs for the next, until reaching the final layer to produce the final output.

Завдання

Swipe to start coding

Your goal is to implement forward propagation for the perceptron:

  1. Iterate over the layers of the perceptron.
  2. Pass x through each layer in the network sequentially.
  3. Return the final output after all layers have processed the input.

If the forward() method is implemented correctly, the perceptron should output a single number between 0 and 1 when given certain inputs (e.g, [1, 0]).

Рішення

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 2. Розділ 5
Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
We're sorry to hear that something went wrong. What happened?
some-alt