Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Neural Network with scikit-learn | Neural Network from Scratch
Introduction to Neural Networks
course content

Зміст курсу

Introduction to Neural Networks

Introduction to Neural Networks

1. Concept of Neural Network
2. Neural Network from Scratch
3. Conclusion

book
Neural Network with scikit-learn

Working with neural networks can be quite tricky, especially if you're trying to build them from scratch. Instead of manually coding algorithms and formulas, you can use ready-made tools such as the sklearn library.

To create the same model as in this section, we can use the MLPClassifier class from the sklearn library:

Note

Neural networks in sklearn determine the number of inputs and outputs based on the data they are trained on. Therefore, there is no need to set them manually.

Benefits of using libraries to build neural networks:

  1. Ease of use: You don't have to dive deep into the details of each algorithm. You can simply use ready-made methods and classes;

  2. Optimization: The sklearn library is optimized for performance, which can reduce the training time of your model;

  3. Extensive Documentation: sklearn provides extensive documentation with usage examples, which can greatly speed up the learning process;

  4. Compatibility: sklearn integrates well with other popular Python libraries such as numpy, pandas and matplotlib.

Here you can see basic commands of MLPClassifier usage:

Changing model parameters:

Training the model:

Predict output values:

Завдання
test

Swipe to show code editor

Recreate the neural network using the sklearn library and train it on all features:

  1. Set up parameters of the model: 100 epochs, two hidden layers of 10 neurons each, learning rate is 0.5.
  2. Train the model.
  3. Evaluate the model.

Рішення

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 2. Розділ 7
toggle bottom row

book
Neural Network with scikit-learn

Working with neural networks can be quite tricky, especially if you're trying to build them from scratch. Instead of manually coding algorithms and formulas, you can use ready-made tools such as the sklearn library.

To create the same model as in this section, we can use the MLPClassifier class from the sklearn library:

Note

Neural networks in sklearn determine the number of inputs and outputs based on the data they are trained on. Therefore, there is no need to set them manually.

Benefits of using libraries to build neural networks:

  1. Ease of use: You don't have to dive deep into the details of each algorithm. You can simply use ready-made methods and classes;

  2. Optimization: The sklearn library is optimized for performance, which can reduce the training time of your model;

  3. Extensive Documentation: sklearn provides extensive documentation with usage examples, which can greatly speed up the learning process;

  4. Compatibility: sklearn integrates well with other popular Python libraries such as numpy, pandas and matplotlib.

Here you can see basic commands of MLPClassifier usage:

Changing model parameters:

Training the model:

Predict output values:

Завдання
test

Swipe to show code editor

Recreate the neural network using the sklearn library and train it on all features:

  1. Set up parameters of the model: 100 epochs, two hidden layers of 10 neurons each, learning rate is 0.5.
  2. Train the model.
  3. Evaluate the model.

Рішення

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 2. Розділ 7
Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
We're sorry to hear that something went wrong. What happened?
some-alt