Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Вивчайте Challenge: Plot Moving Average | Financial Data Analysis with Python
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
Python for FinTech

bookChallenge: Plot Moving Average

Moving averages are widely used in financial analysis to smooth out short-term fluctuations and highlight longer-term trends in price data. By averaging a set number of past data points, a moving average helps you see the underlying direction of a financial time series, making it easier to identify trends and potential turning points. This is especially useful when analyzing volatile markets, as it reduces noise and provides a clearer picture of price movement. The simple moving average (SMA) is the most basic type, calculated by taking the mean of a fixed window of consecutive data points as you move through the series.

Завдання

Swipe to start coding

Write a function that takes a list of daily closing prices and a window size, then calculates the simple moving average (SMA) for the given window. Plot both the original prices and the SMA on the same matplotlib chart with a legend and axis labels.

  • Calculate the SMA for each position in the list where enough data points are available.
  • For positions where the SMA cannot be calculated (before enough data points), use None as a placeholder.
  • Plot both the original price series and the SMA on a single chart.
  • Add a legend, x-axis label, y-axis label, and a title to the plot.
  • Raise a ValueError if the window size is less than 1 or greater than the number of prices.

Рішення

Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 1. Розділ 5
single

single

Запитати АІ

expand

Запитати АІ

ChatGPT

Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат

Suggested prompts:

Can you explain how to calculate a simple moving average with an example?

What are the differences between a simple moving average and other types of moving averages?

How can moving averages be used to make trading decisions?

close

bookChallenge: Plot Moving Average

Свайпніть щоб показати меню

Moving averages are widely used in financial analysis to smooth out short-term fluctuations and highlight longer-term trends in price data. By averaging a set number of past data points, a moving average helps you see the underlying direction of a financial time series, making it easier to identify trends and potential turning points. This is especially useful when analyzing volatile markets, as it reduces noise and provides a clearer picture of price movement. The simple moving average (SMA) is the most basic type, calculated by taking the mean of a fixed window of consecutive data points as you move through the series.

Завдання

Swipe to start coding

Write a function that takes a list of daily closing prices and a window size, then calculates the simple moving average (SMA) for the given window. Plot both the original prices and the SMA on the same matplotlib chart with a legend and axis labels.

  • Calculate the SMA for each position in the list where enough data points are available.
  • For positions where the SMA cannot be calculated (before enough data points), use None as a placeholder.
  • Plot both the original price series and the SMA on a single chart.
  • Add a legend, x-axis label, y-axis label, and a title to the plot.
  • Raise a ValueError if the window size is less than 1 or greater than the number of prices.

Рішення

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 1. Розділ 5
single

single

some-alt