Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Вивчайте Challenge: Cluster Asset Returns | Machine Learning for FinTech
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
Python for FinTech

bookChallenge: Cluster Asset Returns

Clustering is a practical approach in finance for grouping assets with similar return profiles, helping you understand which assets behave alike and thus manage portfolio risk more effectively. By applying clustering algorithms such as KMeans, you can identify patterns and relationships among assets that might not be obvious at first glance. This is especially valuable for risk management, as you can diversify your portfolio by ensuring assets from different clusters are included, reducing the chance of simultaneous losses.

Завдання

Swipe to start coding

Implement a function that clusters assets based on their return profiles and returns a mapping of each asset to its assigned cluster.

  • The function must use KMeans from scikit-learn to cluster the assets into two groups based on their return data.
  • The input is a dictionary where each key is an asset name and each value is a list of returns.
  • The function must return a dictionary mapping each asset name to its assigned cluster (0 or 1).
  • Asset return lists must be used as features for clustering.
  • The number of clusters must be set to 2.

Рішення

Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 3. Розділ 5
single

single

Запитати АІ

expand

Запитати АІ

ChatGPT

Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат

close

bookChallenge: Cluster Asset Returns

Свайпніть щоб показати меню

Clustering is a practical approach in finance for grouping assets with similar return profiles, helping you understand which assets behave alike and thus manage portfolio risk more effectively. By applying clustering algorithms such as KMeans, you can identify patterns and relationships among assets that might not be obvious at first glance. This is especially valuable for risk management, as you can diversify your portfolio by ensuring assets from different clusters are included, reducing the chance of simultaneous losses.

Завдання

Swipe to start coding

Implement a function that clusters assets based on their return profiles and returns a mapping of each asset to its assigned cluster.

  • The function must use KMeans from scikit-learn to cluster the assets into two groups based on their return data.
  • The input is a dictionary where each key is an asset name and each value is a list of returns.
  • The function must return a dictionary mapping each asset name to its assigned cluster (0 or 1).
  • Asset return lists must be used as features for clustering.
  • The number of clusters must be set to 2.

Рішення

Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 3. Розділ 5
single

single

some-alt