Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Learn Adding Legend | Plots Customization
Ultimate Visualization with Python

bookAdding Legend

When a chart contains multiple elements, adding a legend helps clarify what each element represents. matplotlib offers several ways to create a legend.

First Option

You can define all labels directly inside plt.legend():

123456789101112131415161718
import numpy as np import matplotlib.pyplot as plt questions = ['question_1', 'question_2', 'question_3'] yes_answers = np.array([500, 240, 726]) no_answers = np.array([432, 618, 101]) answers = np.array([yes_answers, no_answers]) positions = np.arange(len(questions)) width = 0.3 for i in range(len(answers)): plt.bar(positions + width * i, answers[i], width) plt.xticks(positions + width*(len(answers)-1)/2, questions) plt.legend(['positive answers', 'negative answers']) plt.show()
copy

This creates a legend in the upper-left corner by passing a list of labels into plt.legend().

Second Option

You can also assign labels directly inside plotting functions using the label= parameter:

1234567891011121314151617181920
import matplotlib.pyplot as plt import numpy as np questions = ['question_1', 'question_2', 'question_3'] positions = np.arange(len(questions)) yes_answers = np.array([500, 240, 726]) no_answers = np.array([432, 618, 101]) answers = [yes_answers, no_answers] labels = ['positive answers', 'negative answers'] width = 0.3 for i in range(len(answers)): plt.bar(positions + width*i, answers[i], width, label=labels[i]) plt.xticks(positions + width*(len(answers)-1)/2, questions) plt.legend() plt.show()
copy

Here, plt.legend() automatically gathers labels from the plotted elements.

Third Option

You can also set labels using the set_label() method of the returned artist:

12345678910111213141516171819202122
import matplotlib.pyplot as plt import numpy as np questions = ['question_1', 'question_2', 'question_3'] positions = np.arange(len(questions)) yes_answers = np.array([500, 240, 726]) no_answers = np.array([432, 618, 101]) answers = [yes_answers, no_answers] width = 0.3 labels = ['positive answers', 'negative answers'] for i in range(len(answers)): bar = plt.bar(positions + width*i, answers[i], width) bar.set_label(labels[i]) center_positions = positions + width*(len(answers)-1)/2 plt.xticks(center_positions, questions) plt.legend(loc='upper center') plt.show()
copy

Legend Location

The loc argument controls where the legend appears. The default 'best' asks matplotlib to choose an optimal location automatically.

12345678910111213141516171819202122
import matplotlib.pyplot as plt import numpy as np questions = ['question_1', 'question_2', 'question_3'] positions = np.arange(len(questions)) yes_answers = np.array([500, 240, 726]) no_answers = np.array([432, 618, 101]) answers = [yes_answers, no_answers] labels = ['positive answers', 'negative answers'] width = 0.3 for i, label in enumerate(labels): bars = plt.bar(positions + width*i, answers[i], width) bars.set_label(label) center_positions = positions + width*(len(answers)-1)/2 plt.xticks(center_positions, questions) plt.legend(loc='upper center') plt.show()
copy

Valid values for loc include: 'upper right', 'upper left', 'lower left', 'lower right', 'right', 'center left', 'center right', 'lower center', 'center'.

Note
Study More

You can explore more in legend() documentation

Task

Swipe to start coding

  1. Label the lowest bars as 'primary sector' specifying the appropriate keyword argument.
  2. Label the bars in the middle as 'secondary sector' specifying the appropriate keyword argument.
  3. Label the top bars as 'tertiary sector' specifying the appropriate keyword argument.
  4. Place the legend on the right side, centered vertically.

Solution

Everything was clear?

How can we improve it?

Thanks for your feedback!

Section 3. Chapter 2
single

single

Ask AI

expand

Ask AI

ChatGPT

Ask anything or try one of the suggested questions to begin our chat

close

Awesome!

Completion rate improved to 3.85

bookAdding Legend

Swipe to show menu

When a chart contains multiple elements, adding a legend helps clarify what each element represents. matplotlib offers several ways to create a legend.

First Option

You can define all labels directly inside plt.legend():

123456789101112131415161718
import numpy as np import matplotlib.pyplot as plt questions = ['question_1', 'question_2', 'question_3'] yes_answers = np.array([500, 240, 726]) no_answers = np.array([432, 618, 101]) answers = np.array([yes_answers, no_answers]) positions = np.arange(len(questions)) width = 0.3 for i in range(len(answers)): plt.bar(positions + width * i, answers[i], width) plt.xticks(positions + width*(len(answers)-1)/2, questions) plt.legend(['positive answers', 'negative answers']) plt.show()
copy

This creates a legend in the upper-left corner by passing a list of labels into plt.legend().

Second Option

You can also assign labels directly inside plotting functions using the label= parameter:

1234567891011121314151617181920
import matplotlib.pyplot as plt import numpy as np questions = ['question_1', 'question_2', 'question_3'] positions = np.arange(len(questions)) yes_answers = np.array([500, 240, 726]) no_answers = np.array([432, 618, 101]) answers = [yes_answers, no_answers] labels = ['positive answers', 'negative answers'] width = 0.3 for i in range(len(answers)): plt.bar(positions + width*i, answers[i], width, label=labels[i]) plt.xticks(positions + width*(len(answers)-1)/2, questions) plt.legend() plt.show()
copy

Here, plt.legend() automatically gathers labels from the plotted elements.

Third Option

You can also set labels using the set_label() method of the returned artist:

12345678910111213141516171819202122
import matplotlib.pyplot as plt import numpy as np questions = ['question_1', 'question_2', 'question_3'] positions = np.arange(len(questions)) yes_answers = np.array([500, 240, 726]) no_answers = np.array([432, 618, 101]) answers = [yes_answers, no_answers] width = 0.3 labels = ['positive answers', 'negative answers'] for i in range(len(answers)): bar = plt.bar(positions + width*i, answers[i], width) bar.set_label(labels[i]) center_positions = positions + width*(len(answers)-1)/2 plt.xticks(center_positions, questions) plt.legend(loc='upper center') plt.show()
copy

Legend Location

The loc argument controls where the legend appears. The default 'best' asks matplotlib to choose an optimal location automatically.

12345678910111213141516171819202122
import matplotlib.pyplot as plt import numpy as np questions = ['question_1', 'question_2', 'question_3'] positions = np.arange(len(questions)) yes_answers = np.array([500, 240, 726]) no_answers = np.array([432, 618, 101]) answers = [yes_answers, no_answers] labels = ['positive answers', 'negative answers'] width = 0.3 for i, label in enumerate(labels): bars = plt.bar(positions + width*i, answers[i], width) bars.set_label(label) center_positions = positions + width*(len(answers)-1)/2 plt.xticks(center_positions, questions) plt.legend(loc='upper center') plt.show()
copy

Valid values for loc include: 'upper right', 'upper left', 'lower left', 'lower right', 'right', 'center left', 'center right', 'lower center', 'center'.

Note
Study More

You can explore more in legend() documentation

Task

Swipe to start coding

  1. Label the lowest bars as 'primary sector' specifying the appropriate keyword argument.
  2. Label the bars in the middle as 'secondary sector' specifying the appropriate keyword argument.
  3. Label the top bars as 'tertiary sector' specifying the appropriate keyword argument.
  4. Place the legend on the right side, centered vertically.

Solution

Switch to desktopSwitch to desktop for real-world practiceContinue from where you are using one of the options below
Everything was clear?

How can we improve it?

Thanks for your feedback!

Section 3. Chapter 2
single

single

some-alt