Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Learn Challenge: Optimize a Three-Asset Portfolio | Risk Analysis and Portfolio Optimization
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
Python for Financial Analysts

bookChallenge: Optimize a Three-Asset Portfolio

As you have learned, mean-variance optimization is a cornerstone of modern portfolio theory. It allows you to select asset weights that maximize expected return for a given level of risk, or minimize risk for a given expected return. However, in practice, the analytical solution can become complex, especially with more assets and constraints. This is where simulation-based approachesβ€”such as Monte Carlo simulationsβ€”become powerful. By generating thousands of random portfolios and calculating their risk and return, you can visualize the opportunity set and identify optimal portfolios based on your chosen criteria, such as the Sharpe ratio.

1234567891011121314
import numpy as np # Example expected annual returns for three assets expected_returns = np.array([0.08, 0.12, 0.10]) # Asset A, B, C # Example standard deviations (annualized) std_devs = np.array([0.15, 0.20, 0.18]) # Example correlation matrix correlation_matrix = np.array([ [1.0, 0.3, 0.5], [0.3, 1.0, 0.4], [0.5, 0.4, 1.0] ])
copy

To proceed, you will first need to construct the covariance matrix using the standard deviations and correlation matrix. Then, simulate 10,000 random portfolios by generating random weights for each asset (ensuring all weights are non-negative and sum to oneβ€”no short selling). For each simulated portfolio, calculate the expected return as the weighted sum of asset returns, and the risk as the portfolio's standard deviation using the covariance matrix. Finally, plot all simulated portfolios on a scatter plot of risk (x-axis) versus return (y-axis), and highlight the portfolio with the highest Sharpe ratio (assuming a risk-free rate of zero).

Task

Swipe to start coding

Construct a simulation that generates 10,000 random three-asset portfolios, calculates their expected return and risk, and identifies the optimal portfolio by Sharpe ratio.

  • Build the covariance matrix from the given standard deviations and correlation matrix.
  • Generate random weights for each portfolio, ensuring all weights are non-negative and sum to one.
  • For each portfolio, compute expected return as the weighted sum of expected returns.
  • For each portfolio, compute risk as the standard deviation using the covariance matrix.
  • Calculate the Sharpe ratio for each portfolio, assuming a risk-free rate of zero.
  • Identify the portfolio with the highest Sharpe ratio.
  • Plot all simulated portfolios on a risk-return scatter plot, highlighting the optimal portfolio.

Solution

Everything was clear?

How can we improve it?

Thanks for your feedback!

SectionΒ 3. ChapterΒ 5
single

single

Ask AI

expand

Ask AI

ChatGPT

Ask anything or try one of the suggested questions to begin our chat

Suggested prompts:

How do I construct the covariance matrix from the given data?

Can you guide me through simulating the random portfolios?

How do I calculate the Sharpe ratio and identify the optimal portfolio?

close

bookChallenge: Optimize a Three-Asset Portfolio

Swipe to show menu

As you have learned, mean-variance optimization is a cornerstone of modern portfolio theory. It allows you to select asset weights that maximize expected return for a given level of risk, or minimize risk for a given expected return. However, in practice, the analytical solution can become complex, especially with more assets and constraints. This is where simulation-based approachesβ€”such as Monte Carlo simulationsβ€”become powerful. By generating thousands of random portfolios and calculating their risk and return, you can visualize the opportunity set and identify optimal portfolios based on your chosen criteria, such as the Sharpe ratio.

1234567891011121314
import numpy as np # Example expected annual returns for three assets expected_returns = np.array([0.08, 0.12, 0.10]) # Asset A, B, C # Example standard deviations (annualized) std_devs = np.array([0.15, 0.20, 0.18]) # Example correlation matrix correlation_matrix = np.array([ [1.0, 0.3, 0.5], [0.3, 1.0, 0.4], [0.5, 0.4, 1.0] ])
copy

To proceed, you will first need to construct the covariance matrix using the standard deviations and correlation matrix. Then, simulate 10,000 random portfolios by generating random weights for each asset (ensuring all weights are non-negative and sum to oneβ€”no short selling). For each simulated portfolio, calculate the expected return as the weighted sum of asset returns, and the risk as the portfolio's standard deviation using the covariance matrix. Finally, plot all simulated portfolios on a scatter plot of risk (x-axis) versus return (y-axis), and highlight the portfolio with the highest Sharpe ratio (assuming a risk-free rate of zero).

Task

Swipe to start coding

Construct a simulation that generates 10,000 random three-asset portfolios, calculates their expected return and risk, and identifies the optimal portfolio by Sharpe ratio.

  • Build the covariance matrix from the given standard deviations and correlation matrix.
  • Generate random weights for each portfolio, ensuring all weights are non-negative and sum to one.
  • For each portfolio, compute expected return as the weighted sum of expected returns.
  • For each portfolio, compute risk as the standard deviation using the covariance matrix.
  • Calculate the Sharpe ratio for each portfolio, assuming a risk-free rate of zero.
  • Identify the portfolio with the highest Sharpe ratio.
  • Plot all simulated portfolios on a risk-return scatter plot, highlighting the optimal portfolio.

Solution

Switch to desktopSwitch to desktop for real-world practiceContinue from where you are using one of the options below
Everything was clear?

How can we improve it?

Thanks for your feedback!

SectionΒ 3. ChapterΒ 5
single

single

some-alt