Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Learn Using the Distribution Interface | Section
Statistical Visualization with Seaborn

bookUsing the Distribution Interface

The displot (distribution plot) is the "parent" function for all the plots we have learned so far. It provides a single interface to create histograms, KDE plots, and ECDFs.

Why Use Displot?

While histplot and kdeplot are great for single plots, displot has a superpower: faceting.

Using the col (column) or row parameter, displot can automatically split your dataset into multiple side-by-side subplots based on a category.

Key Parameters

  • kind: determines the type of plot;
    • 'hist' (default);
    • 'kde';
    • 'ecdf'.
  • col / row: splits the data into separate subplots arranged in columns or rows.

Example

Here is how you can instantly create 3 separate histograms for different species using just one line of code.

12345678910111213141516
import seaborn as sns import matplotlib.pyplot as plt # Load dataset df = sns.load_dataset('penguins') # Create a grid of plots sns.displot( data=df, x='bill_length_mm', col='species', # Creates 3 subplots (one per species) kind='hist', # Draw histograms element='step' ) plt.show()
copy
Task

Swipe to start coding

Visualize the distribution of diamond carats using the diamonds dataset.

  1. Set the style to 'darkgrid'.
  2. Create a KDE plot using the displot function:
    • Set x to 'carat'.
    • Color the curves by 'cut' using hue.
    • Split the plot into separate columns based on the 'color' of the diamond using col.
    • Set the type of plot to 'kde' using the kind parameter.
    • Normalize the data using multiple='fill' to show relative proportions.
    • Use the 'viridis' palette.
    • Use the df variable as data.
  3. Display the plot.

Solution

Everything was clear?

How can we improve it?

Thanks for your feedback!

Section 1. Chapter 8
single

single

Ask AI

expand

Ask AI

ChatGPT

Ask anything or try one of the suggested questions to begin our chat

close

bookUsing the Distribution Interface

Swipe to show menu

The displot (distribution plot) is the "parent" function for all the plots we have learned so far. It provides a single interface to create histograms, KDE plots, and ECDFs.

Why Use Displot?

While histplot and kdeplot are great for single plots, displot has a superpower: faceting.

Using the col (column) or row parameter, displot can automatically split your dataset into multiple side-by-side subplots based on a category.

Key Parameters

  • kind: determines the type of plot;
    • 'hist' (default);
    • 'kde';
    • 'ecdf'.
  • col / row: splits the data into separate subplots arranged in columns or rows.

Example

Here is how you can instantly create 3 separate histograms for different species using just one line of code.

12345678910111213141516
import seaborn as sns import matplotlib.pyplot as plt # Load dataset df = sns.load_dataset('penguins') # Create a grid of plots sns.displot( data=df, x='bill_length_mm', col='species', # Creates 3 subplots (one per species) kind='hist', # Draw histograms element='step' ) plt.show()
copy
Task

Swipe to start coding

Visualize the distribution of diamond carats using the diamonds dataset.

  1. Set the style to 'darkgrid'.
  2. Create a KDE plot using the displot function:
    • Set x to 'carat'.
    • Color the curves by 'cut' using hue.
    • Split the plot into separate columns based on the 'color' of the diamond using col.
    • Set the type of plot to 'kde' using the kind parameter.
    • Normalize the data using multiple='fill' to show relative proportions.
    • Use the 'viridis' palette.
    • Use the df variable as data.
  3. Display the plot.

Solution

Switch to desktopSwitch to desktop for real-world practiceContinue from where you are using one of the options below
Everything was clear?

How can we improve it?

Thanks for your feedback!

Section 1. Chapter 8
single

single

some-alt