Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Learn Implementing Probability Basics in Python | Probability & Statistics
Mathematics for Data Science

bookImplementing Probability Basics in Python

Defining Sample Space and Events

# Small numbers on a die
A = {1, 2, 3}

# Even numbers on a die  
B = {2, 4, 6}  

die_outcomes = 6

Here we define:

  • A={1,2,3}A = \{1,2,3\} representing "small" outcomes;
  • B={2,4,6}B = \{2,4,6\} representing "even" outcomes.

The total number of die outcomes is 6.

Performing Set Operations

12345678
# Small numbers on a die A = {1, 2, 3} # Even numbers on a die B = {2, 4, 6} die_outcomes = 6 print(f'A and B = {A & B}') # {2} print(f'A or B = {A | B}') # {1, 2, 3, 4, 6}
copy
  • The intersection A∩B={2}A \cap B = \{2\} β†’ common element.
  • The union AβˆͺB={1,2,3,4,6}A \cup B = \{1,2,3,4,6\} β†’ all elements in A or B.

Calculating Probabilities

123456789101112131415161718
# Small numbers on a die A = {1, 2, 3} # Even numbers on a die B = {2, 4, 6} die_outcomes = 6 A_and_B = A & B # {2} A_or_B = A | B # {1, 2, 3, 4, 6} P_A = len(A) / die_outcomes P_B = len(B) / die_outcomes P_A_and_B = len(A_and_B) / die_outcomes P_A_or_B = P_A + P_B - P_A_and_B print("P(A) =", P_A) print("P(B) =", P_B) print("P(A ∩ B) =", P_A_and_B) print("P(A βˆͺ B) =", P_A_or_B)
copy

We use the formulas:

  • P(A)=∣A∣6=36P(A) = \frac{\raisebox{1pt}{$|A|$}}{\raisebox{-1pt}{$6$}} = \frac{\raisebox{1pt}{$3$}}{\raisebox{-1pt}{$6$}};
  • P(B)=∣B∣6=36P(B) = \frac{\raisebox{1pt}{$|B|$}}{\raisebox{-1pt}{$6$}} = \frac{\raisebox{1pt}{$3$}}{\raisebox{-1pt}{$6$}};
  • P(A∩B)=∣A∩B∣6=16P(A \cap B) = \frac{\raisebox{1pt}{$|A \cap B|$}}{\raisebox{-1pt}{$6$}} = \frac{\raisebox{1pt}{$1$}}{\raisebox{-1pt}{$6$}};
  • P(AβˆͺB)=P(A)+P(B)βˆ’P(A∩B)=56P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{\raisebox{1pt}{$5$}}{\raisebox{-1pt}{$6$}}.

Additional Set Details

12345
only_A = A - B # {1, 3} only_B = B - A # {4, 6} print(only_A) print(only_B)
copy
  • Elements only in A: {1, 3};
  • Elements only in B: {4, 6}.
question mark

What is the output of this code?

Select the correct answer

Everything was clear?

How can we improve it?

Thanks for your feedback!

SectionΒ 5. ChapterΒ 2

Ask AI

expand

Ask AI

ChatGPT

Ask anything or try one of the suggested questions to begin our chat

Suggested prompts:

Can you explain the inclusion-exclusion principle in more detail?

How do you visualize these probabilities using a Venn diagram?

What happens if the events A and B are mutually exclusive?

Awesome!

Completion rate improved to 1.96

bookImplementing Probability Basics in Python

Swipe to show menu

Defining Sample Space and Events

# Small numbers on a die
A = {1, 2, 3}

# Even numbers on a die  
B = {2, 4, 6}  

die_outcomes = 6

Here we define:

  • A={1,2,3}A = \{1,2,3\} representing "small" outcomes;
  • B={2,4,6}B = \{2,4,6\} representing "even" outcomes.

The total number of die outcomes is 6.

Performing Set Operations

12345678
# Small numbers on a die A = {1, 2, 3} # Even numbers on a die B = {2, 4, 6} die_outcomes = 6 print(f'A and B = {A & B}') # {2} print(f'A or B = {A | B}') # {1, 2, 3, 4, 6}
copy
  • The intersection A∩B={2}A \cap B = \{2\} β†’ common element.
  • The union AβˆͺB={1,2,3,4,6}A \cup B = \{1,2,3,4,6\} β†’ all elements in A or B.

Calculating Probabilities

123456789101112131415161718
# Small numbers on a die A = {1, 2, 3} # Even numbers on a die B = {2, 4, 6} die_outcomes = 6 A_and_B = A & B # {2} A_or_B = A | B # {1, 2, 3, 4, 6} P_A = len(A) / die_outcomes P_B = len(B) / die_outcomes P_A_and_B = len(A_and_B) / die_outcomes P_A_or_B = P_A + P_B - P_A_and_B print("P(A) =", P_A) print("P(B) =", P_B) print("P(A ∩ B) =", P_A_and_B) print("P(A βˆͺ B) =", P_A_or_B)
copy

We use the formulas:

  • P(A)=∣A∣6=36P(A) = \frac{\raisebox{1pt}{$|A|$}}{\raisebox{-1pt}{$6$}} = \frac{\raisebox{1pt}{$3$}}{\raisebox{-1pt}{$6$}};
  • P(B)=∣B∣6=36P(B) = \frac{\raisebox{1pt}{$|B|$}}{\raisebox{-1pt}{$6$}} = \frac{\raisebox{1pt}{$3$}}{\raisebox{-1pt}{$6$}};
  • P(A∩B)=∣A∩B∣6=16P(A \cap B) = \frac{\raisebox{1pt}{$|A \cap B|$}}{\raisebox{-1pt}{$6$}} = \frac{\raisebox{1pt}{$1$}}{\raisebox{-1pt}{$6$}};
  • P(AβˆͺB)=P(A)+P(B)βˆ’P(A∩B)=56P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{\raisebox{1pt}{$5$}}{\raisebox{-1pt}{$6$}}.

Additional Set Details

12345
only_A = A - B # {1, 3} only_B = B - A # {4, 6} print(only_A) print(only_B)
copy
  • Elements only in A: {1, 3};
  • Elements only in B: {4, 6}.
question mark

What is the output of this code?

Select the correct answer

Everything was clear?

How can we improve it?

Thanks for your feedback!

SectionΒ 5. ChapterΒ 2
some-alt