Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Learn Algebraic Functions | Functions and Their Properties
Mathematics for Data Science

bookAlgebraic Functions

Note
Definition

An algebraic function is any function that can be expressed using basic arithmetic operations and variables.

Types and Behaviors

1. Identity Function

Form: f(x)=xf(x) = x

Behavior:

  • Passes through the origin (0,0)(0, 0);
  • A straight line with slope m=1m = 1;
  • Every input maps to itself;
  • No maximum or minimum;
  • Domain: (βˆ’βˆž,∞)(-\infty, \infty);
  • Range: (βˆ’βˆž,∞)(-\infty, \infty).

Use case: representing unchanged data or as a reference in transformations.

2. Constant Function

Form: f(x)=cf(x) = c

Behavior:

  • A horizontal line at y=cy = c;
  • The output remains constant for all inputs;
  • Slope: m=0m = 0;
  • No maximum or minimum;
  • Domain: (βˆ’βˆž,∞)(-\infty, \infty);
  • Range: c{c}.

Use case: representing fixed quantities such as baseline values or flat fees.

3. Linear Function

Form: f(x)=mx+bf(x) = mx + b

Behavior:

  • A straight line with slope mm;
  • Increasing if m>0m > 0, decreasing if m<0m < 0;
  • X-intercept: x=βˆ’bmx = -\frac{b}{m};
  • Y-intercept: y=by = b;
  • No maximum or minimum;
  • Domain: (βˆ’βˆž,∞)(-\infty, \infty);
  • Range: (βˆ’βˆž,∞)(-\infty, \infty).

Use case: predicting continuous outcomes such as revenue or costs.

4. Polynomial Function (Quadratic Example)

Form: f(x)=ax2+bx+cf(x) = ax^2 + bx + c

Behavior:

  • Parabolic curve (U-shaped if a>0a > 0; inverted U if a<0a < 0);
  • Vertex at x=βˆ’b2ax = -\frac{b}{2a};
  • X-intercepts (roots): x=βˆ’bΒ±b2βˆ’4ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a};
  • Y-intercept: f(0)=cf(0) = c;
  • Domain: (βˆ’βˆž,∞)(-\infty, \infty);
  • Range:
    • If a>0a > 0, then [yvertex;∞)[y_{vertex}; \infty);
    • If a<0a < 0, then (βˆ’βˆž;yvertex](-\infty; y_{vertex}].

Use case: curve fitting, regression models, and describing non-linear trends.

5. Rational Function

Form: f(x)=p(x)q(x)f(x) = \frac{p(x)}{q(x)}

Example: f(x)=1xβˆ’1f(x) = \frac{1}{x - 1}

Behavior:

  • Vertical asymptote at x=1x = 1;
  • Horizontal asymptote at y=0y = 0;
  • Undefined at x=1x = 1;
  • Sharp increase and decrease near the asymptote;
  • Domain: (βˆ’βˆž,1)βˆͺ(1,∞)(-\infty, 1) \cup (1, \infty);
  • Range: (βˆ’βˆž,0)βˆͺ(0,∞)(-\infty, 0) \cup (0, \infty).

Use case: modeling constrained systems such as rates of change or resource utilization.

question mark

Which type of function has the form f(x)=mx+bf(x) = mx + b and shows a constant rate of change?

Select the correct answer

Everything was clear?

How can we improve it?

Thanks for your feedback!

SectionΒ 1. ChapterΒ 4

Ask AI

expand

Ask AI

ChatGPT

Ask anything or try one of the suggested questions to begin our chat

Awesome!

Completion rate improved to 1.96

bookAlgebraic Functions

Swipe to show menu

Note
Definition

An algebraic function is any function that can be expressed using basic arithmetic operations and variables.

Types and Behaviors

1. Identity Function

Form: f(x)=xf(x) = x

Behavior:

  • Passes through the origin (0,0)(0, 0);
  • A straight line with slope m=1m = 1;
  • Every input maps to itself;
  • No maximum or minimum;
  • Domain: (βˆ’βˆž,∞)(-\infty, \infty);
  • Range: (βˆ’βˆž,∞)(-\infty, \infty).

Use case: representing unchanged data or as a reference in transformations.

2. Constant Function

Form: f(x)=cf(x) = c

Behavior:

  • A horizontal line at y=cy = c;
  • The output remains constant for all inputs;
  • Slope: m=0m = 0;
  • No maximum or minimum;
  • Domain: (βˆ’βˆž,∞)(-\infty, \infty);
  • Range: c{c}.

Use case: representing fixed quantities such as baseline values or flat fees.

3. Linear Function

Form: f(x)=mx+bf(x) = mx + b

Behavior:

  • A straight line with slope mm;
  • Increasing if m>0m > 0, decreasing if m<0m < 0;
  • X-intercept: x=βˆ’bmx = -\frac{b}{m};
  • Y-intercept: y=by = b;
  • No maximum or minimum;
  • Domain: (βˆ’βˆž,∞)(-\infty, \infty);
  • Range: (βˆ’βˆž,∞)(-\infty, \infty).

Use case: predicting continuous outcomes such as revenue or costs.

4. Polynomial Function (Quadratic Example)

Form: f(x)=ax2+bx+cf(x) = ax^2 + bx + c

Behavior:

  • Parabolic curve (U-shaped if a>0a > 0; inverted U if a<0a < 0);
  • Vertex at x=βˆ’b2ax = -\frac{b}{2a};
  • X-intercepts (roots): x=βˆ’bΒ±b2βˆ’4ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a};
  • Y-intercept: f(0)=cf(0) = c;
  • Domain: (βˆ’βˆž,∞)(-\infty, \infty);
  • Range:
    • If a>0a > 0, then [yvertex;∞)[y_{vertex}; \infty);
    • If a<0a < 0, then (βˆ’βˆž;yvertex](-\infty; y_{vertex}].

Use case: curve fitting, regression models, and describing non-linear trends.

5. Rational Function

Form: f(x)=p(x)q(x)f(x) = \frac{p(x)}{q(x)}

Example: f(x)=1xβˆ’1f(x) = \frac{1}{x - 1}

Behavior:

  • Vertical asymptote at x=1x = 1;
  • Horizontal asymptote at y=0y = 0;
  • Undefined at x=1x = 1;
  • Sharp increase and decrease near the asymptote;
  • Domain: (βˆ’βˆž,1)βˆͺ(1,∞)(-\infty, 1) \cup (1, \infty);
  • Range: (βˆ’βˆž,0)βˆͺ(0,∞)(-\infty, 0) \cup (0, \infty).

Use case: modeling constrained systems such as rates of change or resource utilization.

question mark

Which type of function has the form f(x)=mx+bf(x) = mx + b and shows a constant rate of change?

Select the correct answer

Everything was clear?

How can we improve it?

Thanks for your feedback!

SectionΒ 1. ChapterΒ 4
some-alt