Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Learn Introduction to Eigenvectors & Eigenvalues | Linear Algebra Foundations
Mathematics for Data Science

bookIntroduction to Eigenvectors & Eigenvalues

Note
Definition

Eigenvalues and eigenvectors describe how a matrix transforms vectors in space. An eigenvector is a nonzero vector whose direction remains unchanged when multiplied by the matrix, and the corresponding eigenvalue indicates how much the vector is stretched or compressed.

What Are Eigenvectors and Eigenvalues?

An eigenvector is a non-zero vector that only changes in magnitude when a matrix is applied to it. The corresponding scalar value that describes this change is the eigenvalue.

Av⃗=λv⃗A\vec{v} = \lambda\vec{v}

Where:

  • AA is a square matrix;
  • Ξ»\lambda is the eigenvalue;
  • vβƒ—\vec{v} is the eigenvector.

Example Matrix and Setup

Suppose:

A=[4123]A = \begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix}

We want to find values of λ\lambda and vectors v⃗\vec{v} such that:

Av⃗=λv⃗A \vec{v} = \lambda \vec{v}

Characteristic Equation

To find Ξ»\lambda, solve the characteristic equation:

det⁑(Aβˆ’Ξ»I)=0\det(A - \lambda I) = 0

Substitute:

det⁑[4βˆ’Ξ»123βˆ’Ξ»]=0\det \begin{bmatrix} 4-\lambda & 1 \\ 2 & 3-\lambda \end{bmatrix} = 0

Compute determinant:

(4βˆ’Ξ»)(3βˆ’Ξ»)βˆ’2=0(4-\lambda)(3-\lambda) - 2 = 0

Solve:

Ξ»2βˆ’7Ξ»+10=0Ξ»=5,β€…β€ŠΞ»=2\lambda^2 - 7\lambda + 10 = 0 \\ \lambda = 5, \; \lambda = 2

Find Eigenvectors

Now solve for each Ξ»\lambda.

For Ξ»=5\lambda = 5:

Subtract:

(Aβˆ’5I)vβƒ—=0(A - 5I)\vec{v} = 0 [βˆ’112βˆ’2]vβƒ—=0\begin{bmatrix} -1 & 1 \\ 2 & -2 \end{bmatrix} \vec{v} = 0

Solve:

v1=v2v_1 = v_2

So:

v⃗=[11]\vec{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}

For Ξ»=2\lambda = 2:

Subtract:

(Aβˆ’2I)vβƒ—=0(A - 2I)\vec{v} = 0 [2121]vβƒ—=0\begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix} \vec{v} = 0

Solve:

v1=βˆ’12v2v_1 = -\tfrac{1}{2} v_2

So:

vβƒ—=[βˆ’12]\vec{v} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}

Confirm the Eigenpair

Once you have an eigenvalue λ\lambda and an eigenvector v⃗\vec{v}, verify that:

Av⃗=λv⃗A \vec{v} = \lambda \vec{v}

Example:

A[11]=[55]=5[11]A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \end{bmatrix} = 5 \begin{bmatrix} 1 \\ 1 \end{bmatrix}
Note
Note

Eigenvectors are not unique.
If v⃗\vec{v} is an eigenvector, then so is any scalar multiple cv⃗c \vec{v} for c≠0c \neq 0.

Example:

[22]\begin{bmatrix} 2 \\ 2 \end{bmatrix}

is also an eigenvector for Ξ»=5\lambda = 5.

Diagonalization (Advanced)

If a matrix AA has nn linearly independent eigenvectors, then it can be diagonalized:

A=PDPβˆ’1A = PDP^{-1}

Where:

  • PP is the matrix of eigenvectors as columns;
  • DD is a diagonal matrix of eigenvalues;
  • Pβˆ’1P^{-1} is the inverse of PP.

You can confirm diagonalization by checking A=PDPβˆ’1A = PDP^{-1}.
This is useful for computing powers of AA:

Example

Let:

A=[3102]A = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}

Find eigenvalues:

det⁑(Aβˆ’Ξ»I)=0\det(A - \lambda I) = 0

Solve:

Ξ»=3,β€…β€ŠΞ»=2\lambda = 3, \; \lambda = 2

Find eigenvectors:

For Ξ»=3\lambda = 3:

v⃗=[10]\vec{v} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}

For Ξ»=2\lambda = 2:

vβƒ—=[βˆ’11]\vec{v} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}

Construct P,DP, D and Pβˆ’1P^{-1}:

P=[1βˆ’101],D=[3002],Pβˆ’1=[1101]P = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}, \quad P^{-1} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}

Compute:

PDPβˆ’1=[3102]=APDP^{-1} = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix} = A

Confirmed.

Why this matters:

To compute powers of AA, like AkA^k. Since DD is diagonal:

Ak=PDkPβˆ’1A^k = P D^k P^{-1}

This makes calculating matrix powers much faster.

Important Notes

  • Eigenvalues and eigenvectors are directions that remain unchanged under transformation;
  • Ξ»\lambda stretches vβƒ—\vec{v};
  • Ξ»=1\lambda = 1 keeps vβƒ—\vec{v} unchanged in magnitude.
question mark

What is the characteristic equation used for?

Select the correct answer

Everything was clear?

How can we improve it?

Thanks for your feedback!

SectionΒ 4. ChapterΒ 11

Ask AI

expand

Ask AI

ChatGPT

Ask anything or try one of the suggested questions to begin our chat

Awesome!

Completion rate improved to 1.96

bookIntroduction to Eigenvectors & Eigenvalues

Swipe to show menu

Note
Definition

Eigenvalues and eigenvectors describe how a matrix transforms vectors in space. An eigenvector is a nonzero vector whose direction remains unchanged when multiplied by the matrix, and the corresponding eigenvalue indicates how much the vector is stretched or compressed.

What Are Eigenvectors and Eigenvalues?

An eigenvector is a non-zero vector that only changes in magnitude when a matrix is applied to it. The corresponding scalar value that describes this change is the eigenvalue.

Av⃗=λv⃗A\vec{v} = \lambda\vec{v}

Where:

  • AA is a square matrix;
  • Ξ»\lambda is the eigenvalue;
  • vβƒ—\vec{v} is the eigenvector.

Example Matrix and Setup

Suppose:

A=[4123]A = \begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix}

We want to find values of λ\lambda and vectors v⃗\vec{v} such that:

Av⃗=λv⃗A \vec{v} = \lambda \vec{v}

Characteristic Equation

To find Ξ»\lambda, solve the characteristic equation:

det⁑(Aβˆ’Ξ»I)=0\det(A - \lambda I) = 0

Substitute:

det⁑[4βˆ’Ξ»123βˆ’Ξ»]=0\det \begin{bmatrix} 4-\lambda & 1 \\ 2 & 3-\lambda \end{bmatrix} = 0

Compute determinant:

(4βˆ’Ξ»)(3βˆ’Ξ»)βˆ’2=0(4-\lambda)(3-\lambda) - 2 = 0

Solve:

Ξ»2βˆ’7Ξ»+10=0Ξ»=5,β€…β€ŠΞ»=2\lambda^2 - 7\lambda + 10 = 0 \\ \lambda = 5, \; \lambda = 2

Find Eigenvectors

Now solve for each Ξ»\lambda.

For Ξ»=5\lambda = 5:

Subtract:

(Aβˆ’5I)vβƒ—=0(A - 5I)\vec{v} = 0 [βˆ’112βˆ’2]vβƒ—=0\begin{bmatrix} -1 & 1 \\ 2 & -2 \end{bmatrix} \vec{v} = 0

Solve:

v1=v2v_1 = v_2

So:

v⃗=[11]\vec{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}

For Ξ»=2\lambda = 2:

Subtract:

(Aβˆ’2I)vβƒ—=0(A - 2I)\vec{v} = 0 [2121]vβƒ—=0\begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix} \vec{v} = 0

Solve:

v1=βˆ’12v2v_1 = -\tfrac{1}{2} v_2

So:

vβƒ—=[βˆ’12]\vec{v} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}

Confirm the Eigenpair

Once you have an eigenvalue λ\lambda and an eigenvector v⃗\vec{v}, verify that:

Av⃗=λv⃗A \vec{v} = \lambda \vec{v}

Example:

A[11]=[55]=5[11]A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \end{bmatrix} = 5 \begin{bmatrix} 1 \\ 1 \end{bmatrix}
Note
Note

Eigenvectors are not unique.
If v⃗\vec{v} is an eigenvector, then so is any scalar multiple cv⃗c \vec{v} for c≠0c \neq 0.

Example:

[22]\begin{bmatrix} 2 \\ 2 \end{bmatrix}

is also an eigenvector for Ξ»=5\lambda = 5.

Diagonalization (Advanced)

If a matrix AA has nn linearly independent eigenvectors, then it can be diagonalized:

A=PDPβˆ’1A = PDP^{-1}

Where:

  • PP is the matrix of eigenvectors as columns;
  • DD is a diagonal matrix of eigenvalues;
  • Pβˆ’1P^{-1} is the inverse of PP.

You can confirm diagonalization by checking A=PDPβˆ’1A = PDP^{-1}.
This is useful for computing powers of AA:

Example

Let:

A=[3102]A = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}

Find eigenvalues:

det⁑(Aβˆ’Ξ»I)=0\det(A - \lambda I) = 0

Solve:

Ξ»=3,β€…β€ŠΞ»=2\lambda = 3, \; \lambda = 2

Find eigenvectors:

For Ξ»=3\lambda = 3:

v⃗=[10]\vec{v} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}

For Ξ»=2\lambda = 2:

vβƒ—=[βˆ’11]\vec{v} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}

Construct P,DP, D and Pβˆ’1P^{-1}:

P=[1βˆ’101],D=[3002],Pβˆ’1=[1101]P = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}, \quad P^{-1} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}

Compute:

PDPβˆ’1=[3102]=APDP^{-1} = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix} = A

Confirmed.

Why this matters:

To compute powers of AA, like AkA^k. Since DD is diagonal:

Ak=PDkPβˆ’1A^k = P D^k P^{-1}

This makes calculating matrix powers much faster.

Important Notes

  • Eigenvalues and eigenvectors are directions that remain unchanged under transformation;
  • Ξ»\lambda stretches vβƒ—\vec{v};
  • Ξ»=1\lambda = 1 keeps vβƒ—\vec{v} unchanged in magnitude.
question mark

What is the characteristic equation used for?

Select the correct answer

Everything was clear?

How can we improve it?

Thanks for your feedback!

SectionΒ 4. ChapterΒ 11
some-alt