Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Learn Implementing Integrals in Python | Mathematical Analysis
Mathematics for Data Science with Python

bookImplementing Integrals in Python

Swipe to show menu

Computing an Indefinite Integral (Antiderivative)

An indefinite integral represents the antiderivative of a function. It finds the general form of a function whose derivative gives the original function.

1234567891011
import sympy as sp # Define function x = sp.Symbol('x') f = x**2 # Compute indefinite integral F = sp.integrate(f, x) # Output: x**3 / 3 print(F)
copy

Computing a Definite Integral (Area Under Curve)

A definite integral finds the accumulated sum of a function over a range [a,b][a,b].

1234567891011121314
import sympy as sp # Define function x = sp.Symbol('x') f = x**2 # Define integration limits a, b = 0, 2 # Compute definite integral integral_value = sp.integrate(f, (x, a, b)) # Output: 8/3 print(integral_value)
copy

Common Integrals in Python

Python allows us to compute common mathematical integrals symbolically. Here are a few examples:

123456789101112131415161718
import sympy as sp # Define function x = sp.Symbol('x') # Exponential integral exp_integral = sp.integrate(sp.exp(x), x) # Sigmoid function integral sigmoid_integral = sp.integrate(1 / (1 + sp.exp(-x)), x) # Quadratic function integral quadratic_integral = sp.integrate(2*x, (x, 0, 2)) # Print results print(exp_integral) # Output: e^x print(sigmoid_integral) # Output: log(1 + e^x) print(quadratic_integral) # Output: 4
copy
question mark

What is the result of this integral?

Select the correct answer

Everything was clear?

How can we improve it?

Thanks for your feedback!

SectionΒ 3. ChapterΒ 6

Ask AI

expand

Ask AI

ChatGPT

Ask anything or try one of the suggested questions to begin our chat

SectionΒ 3. ChapterΒ 6
some-alt