Implementing Integrals in Python
Computing an Indefinite Integral (Antiderivative)
An indefinite integral represents the antiderivative of a function. It finds the general form of a function whose derivative gives the original function.
1234567891011import sympy as sp # Define function x = sp.Symbol('x') f = x**2 # Compute indefinite integral F = sp.integrate(f, x) # Output: x**3 / 3 print(F)
Computing a Definite Integral (Area Under Curve)
A definite integral finds the accumulated sum of a function over a range [a,b].
1234567891011121314import sympy as sp # Define function x = sp.Symbol('x') f = x**2 # Define integration limits a, b = 0, 2 # Compute definite integral integral_value = sp.integrate(f, (x, a, b)) # Output: 8/3 print(integral_value)
Common Integrals in Python
Python allows us to compute common mathematical integrals symbolically. Here are a few examples:
123456789101112131415161718import sympy as sp # Define function x = sp.Symbol('x') # Exponential integral exp_integral = sp.integrate(sp.exp(x), x) # Sigmoid function integral sigmoid_integral = sp.integrate(1 / (1 + sp.exp(-x)), x) # Quadratic function integral quadratic_integral = sp.integrate(2*x, (x, 0, 2)) # Print results print(exp_integral) # Output: e^x print(sigmoid_integral) # Output: log(1 + e^x) print(quadratic_integral) # Output: 4
Thanks for your feedback!
Ask AI
Ask AI
Ask anything or try one of the suggested questions to begin our chat
Can you explain the difference between definite and indefinite integrals?
How does the antiderivative relate to the original function?
Can you walk me through how the area under the curve is calculated in Python?
Awesome!
Completion rate improved to 1.96
Implementing Integrals in Python
Swipe to show menu
Computing an Indefinite Integral (Antiderivative)
An indefinite integral represents the antiderivative of a function. It finds the general form of a function whose derivative gives the original function.
1234567891011import sympy as sp # Define function x = sp.Symbol('x') f = x**2 # Compute indefinite integral F = sp.integrate(f, x) # Output: x**3 / 3 print(F)
Computing a Definite Integral (Area Under Curve)
A definite integral finds the accumulated sum of a function over a range [a,b].
1234567891011121314import sympy as sp # Define function x = sp.Symbol('x') f = x**2 # Define integration limits a, b = 0, 2 # Compute definite integral integral_value = sp.integrate(f, (x, a, b)) # Output: 8/3 print(integral_value)
Common Integrals in Python
Python allows us to compute common mathematical integrals symbolically. Here are a few examples:
123456789101112131415161718import sympy as sp # Define function x = sp.Symbol('x') # Exponential integral exp_integral = sp.integrate(sp.exp(x), x) # Sigmoid function integral sigmoid_integral = sp.integrate(1 / (1 + sp.exp(-x)), x) # Quadratic function integral quadratic_integral = sp.integrate(2*x, (x, 0, 2)) # Print results print(exp_integral) # Output: e^x print(sigmoid_integral) # Output: log(1 + e^x) print(quadratic_integral) # Output: 4
Thanks for your feedback!