Implementing Gradient Descent in Python
Gradient descent follows a simple but powerful idea: move in the direction of steepest descent to minimize a function.
The mathematical rule is:
theta = theta - alpha * gradient(theta)
Where:
theta
is the parameter we are optimizing;alpha
is the learning rate (step size);gradient(theta)
is the gradient of the function attheta
.
1. Define the Function and Its Derivative
We start with a simple quadratic function:
def f(theta):
return theta**2 # Function we want to minimize
Its derivative (gradient) is:
def gradient(theta):
return 2 * theta # Derivative: f'(theta) = 2*theta
f(theta)
: this is our function, and we want to find the value of theta that minimizes it;gradient(theta)
: this tells us the slope at any pointtheta
, which we use to determine the update direction.
2. Initialize Gradient Descent Parameters
alpha = 0.3 # Learning rate
theta = 3.0 # Initial starting point
tolerance = 1e-5 # Convergence threshold
max_iterations = 20 # Maximum number of updates
alpha
(learning rate): controls how big each step is;theta
(initial guess): the starting point for descent;tolerance
: when the updates become tiny, we stop;max_iterations
: ensures we don't loop forever.
3. Perform Gradient Descent
for i in range(max_iterations):
grad = gradient(theta) # Compute gradient
new_theta = theta - alpha * grad # Update rule
if abs(new_theta - theta) < tolerance:
print("Converged!")
break
theta = new_theta
- Calculate the gradient at
theta
; - Update
theta
using the gradient descent formula; - Stop when updates are too small (convergence);
- Print each step to monitor progress.
4. Visualizing Gradient Descent
123456789101112131415161718192021222324252627282930313233343536373839import matplotlib.pyplot as plt import numpy as np def f(theta): return theta**2 # Function we want to minimize def gradient(theta): return 2 * theta # Derivative: f'(theta) = 2*theta alpha = 0.3 # Learning rate theta = 3.0 # Initial starting point tolerance = 1e-5 # Convergence threshold max_iterations = 20 # Maximum number of updates theta_values = [theta] # Track parameter values output_values = [f(theta)] # Track function values for i in range(max_iterations): grad = gradient(theta) # Compute gradient new_theta = theta - alpha * grad # Update rule if abs(new_theta - theta) < tolerance: break theta = new_theta theta_values.append(theta) output_values.append(f(theta)) # Prepare data for plotting the full function curve theta_range = np.linspace(-4, 4, 100) output_range = f(theta_range) # Plot plt.plot(theta_range, output_range, label="f(θ) = θ²", color='black') plt.scatter(theta_values, output_values, color='red', label="Gradient Descent Steps") plt.title("Gradient Descent Visualization") plt.xlabel("θ") plt.ylabel("f(θ)") plt.legend() plt.grid(True) plt.show()
This plot shows:
- The function curve f(θ)=θ2;
- Red dots representing each gradient descent step until convergence.
Thanks for your feedback!
Ask AI
Ask AI
Ask anything or try one of the suggested questions to begin our chat
Can you explain how the learning rate affects convergence?
What happens if we change the initial value of theta?
Can you summarize the main steps of the gradient descent algorithm?
Awesome!
Completion rate improved to 1.96
Implementing Gradient Descent in Python
Swipe to show menu
Gradient descent follows a simple but powerful idea: move in the direction of steepest descent to minimize a function.
The mathematical rule is:
theta = theta - alpha * gradient(theta)
Where:
theta
is the parameter we are optimizing;alpha
is the learning rate (step size);gradient(theta)
is the gradient of the function attheta
.
1. Define the Function and Its Derivative
We start with a simple quadratic function:
def f(theta):
return theta**2 # Function we want to minimize
Its derivative (gradient) is:
def gradient(theta):
return 2 * theta # Derivative: f'(theta) = 2*theta
f(theta)
: this is our function, and we want to find the value of theta that minimizes it;gradient(theta)
: this tells us the slope at any pointtheta
, which we use to determine the update direction.
2. Initialize Gradient Descent Parameters
alpha = 0.3 # Learning rate
theta = 3.0 # Initial starting point
tolerance = 1e-5 # Convergence threshold
max_iterations = 20 # Maximum number of updates
alpha
(learning rate): controls how big each step is;theta
(initial guess): the starting point for descent;tolerance
: when the updates become tiny, we stop;max_iterations
: ensures we don't loop forever.
3. Perform Gradient Descent
for i in range(max_iterations):
grad = gradient(theta) # Compute gradient
new_theta = theta - alpha * grad # Update rule
if abs(new_theta - theta) < tolerance:
print("Converged!")
break
theta = new_theta
- Calculate the gradient at
theta
; - Update
theta
using the gradient descent formula; - Stop when updates are too small (convergence);
- Print each step to monitor progress.
4. Visualizing Gradient Descent
123456789101112131415161718192021222324252627282930313233343536373839import matplotlib.pyplot as plt import numpy as np def f(theta): return theta**2 # Function we want to minimize def gradient(theta): return 2 * theta # Derivative: f'(theta) = 2*theta alpha = 0.3 # Learning rate theta = 3.0 # Initial starting point tolerance = 1e-5 # Convergence threshold max_iterations = 20 # Maximum number of updates theta_values = [theta] # Track parameter values output_values = [f(theta)] # Track function values for i in range(max_iterations): grad = gradient(theta) # Compute gradient new_theta = theta - alpha * grad # Update rule if abs(new_theta - theta) < tolerance: break theta = new_theta theta_values.append(theta) output_values.append(f(theta)) # Prepare data for plotting the full function curve theta_range = np.linspace(-4, 4, 100) output_range = f(theta_range) # Plot plt.plot(theta_range, output_range, label="f(θ) = θ²", color='black') plt.scatter(theta_values, output_values, color='red', label="Gradient Descent Steps") plt.title("Gradient Descent Visualization") plt.xlabel("θ") plt.ylabel("f(θ)") plt.legend() plt.grid(True) plt.show()
This plot shows:
- The function curve f(θ)=θ2;
- Red dots representing each gradient descent step until convergence.
Thanks for your feedback!