Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Learn Introduction to Limits | Mathematical Analysis
Mathematics for Data Science with Python

bookIntroduction to Limits

Note
Definition

A limit is a fundamental concept in calculus that describes the value a function approaches as its input nears a specific point. Limits form the basis for defining derivatives and integrals, making them essential in mathematical analysis and machine learning optimization.

Formal Definition & Notation

A limit represents the value that a function approaches as the input gets arbitrarily close to a point.

lim⁑xβ†’af(x)=L\lim_{x \rarr a}f(x) = L

This means that as xx gets arbitrarily close to aa where approaches LL.

Note
Note

The function does not need to be defined at x=ax=a for the limit to exist.

One-Sided & Two-Sided Limits

A limit can be approached from either side:

  • Left-hand limit: approaching aa from values smaller than aa: lim⁑xβ†’aβˆ’f(x)\lim_{x \rarr a^-}f(x)
  • Right-hand limit: approaching aa from values larger than aa: lim⁑xβ†’a+f(x)\lim_{x \rarr a^+}f(x)
  • The limit exists only if both one-sided limits are equal: lim⁑xβ†’aβˆ’f(x)=lim⁑xβ†’a+f(x)\lim_{x \rarr a^-}f(x) = \lim_{x \rarr a^+}f(x)

When Limits Fail to Exist

A limit does not exist in the following cases:

  • Jump discontinuity: lim⁑xβ†’aβˆ’f(x)β‰ lim⁑xβ†’a+f(x)\lim_{x \rarr a^-}f(x) \neq \lim_{x \rarr a^+}f(x)
    • Example: a step function where the left and right limits are different.
  • Infinite limit: lim⁑xβ†’01x2=∞\lim_{x \rarr 0}\frac{1}{x^2}=\infty
    • The function grows unbounded.
  • Oscillation: lim⁑xβ†’0sin⁑(1x)\lim_{x \rarr 0}\sin\left(\frac{1}{x}\right)
    • The function fluctuates infinitely without settling to a single value.

Special Case – Limits at Infinity

When xx approaches infinity, we analyze the end behavior of functions:

  • Rational functions: lim⁑xβ†’βˆž1x=0\lim_{x \rarr \infty}\frac{1}{x}=0
  • Polynomial growth: lim⁑xβ†’βˆžx2x=∞\lim_{x \rarr \infty}\frac{x^2}{x}=\infty
  • Dominant term rule: lim⁑xβ†’βˆžaxmbxn={0,Β ifΒ m<n,ab,Β ifΒ m=n,±∞,Β ifΒ m>n.\lim_{x \to \infty} \frac{a x^m}{b x^n} = \begin{cases} 0,\ \text{if } m < n,\\ \frac{a}{b},\ \text{if } m = n, \\ \pm \infty,\ \text{if } m > n. \end{cases}
question mark

Which statement correctly describes when a limit exists?

Select the correct answer

Everything was clear?

How can we improve it?

Thanks for your feedback!

SectionΒ 3. ChapterΒ 1

Ask AI

expand

Ask AI

ChatGPT

Ask anything or try one of the suggested questions to begin our chat

bookIntroduction to Limits

Swipe to show menu

Note
Definition

A limit is a fundamental concept in calculus that describes the value a function approaches as its input nears a specific point. Limits form the basis for defining derivatives and integrals, making them essential in mathematical analysis and machine learning optimization.

Formal Definition & Notation

A limit represents the value that a function approaches as the input gets arbitrarily close to a point.

lim⁑xβ†’af(x)=L\lim_{x \rarr a}f(x) = L

This means that as xx gets arbitrarily close to aa where approaches LL.

Note
Note

The function does not need to be defined at x=ax=a for the limit to exist.

One-Sided & Two-Sided Limits

A limit can be approached from either side:

  • Left-hand limit: approaching aa from values smaller than aa: lim⁑xβ†’aβˆ’f(x)\lim_{x \rarr a^-}f(x)
  • Right-hand limit: approaching aa from values larger than aa: lim⁑xβ†’a+f(x)\lim_{x \rarr a^+}f(x)
  • The limit exists only if both one-sided limits are equal: lim⁑xβ†’aβˆ’f(x)=lim⁑xβ†’a+f(x)\lim_{x \rarr a^-}f(x) = \lim_{x \rarr a^+}f(x)

When Limits Fail to Exist

A limit does not exist in the following cases:

  • Jump discontinuity: lim⁑xβ†’aβˆ’f(x)β‰ lim⁑xβ†’a+f(x)\lim_{x \rarr a^-}f(x) \neq \lim_{x \rarr a^+}f(x)
    • Example: a step function where the left and right limits are different.
  • Infinite limit: lim⁑xβ†’01x2=∞\lim_{x \rarr 0}\frac{1}{x^2}=\infty
    • The function grows unbounded.
  • Oscillation: lim⁑xβ†’0sin⁑(1x)\lim_{x \rarr 0}\sin\left(\frac{1}{x}\right)
    • The function fluctuates infinitely without settling to a single value.

Special Case – Limits at Infinity

When xx approaches infinity, we analyze the end behavior of functions:

  • Rational functions: lim⁑xβ†’βˆž1x=0\lim_{x \rarr \infty}\frac{1}{x}=0
  • Polynomial growth: lim⁑xβ†’βˆžx2x=∞\lim_{x \rarr \infty}\frac{x^2}{x}=\infty
  • Dominant term rule: lim⁑xβ†’βˆžaxmbxn={0,Β ifΒ m<n,ab,Β ifΒ m=n,±∞,Β ifΒ m>n.\lim_{x \to \infty} \frac{a x^m}{b x^n} = \begin{cases} 0,\ \text{if } m < n,\\ \frac{a}{b},\ \text{if } m = n, \\ \pm \infty,\ \text{if } m > n. \end{cases}
question mark

Which statement correctly describes when a limit exists?

Select the correct answer

Everything was clear?

How can we improve it?

Thanks for your feedback!

SectionΒ 3. ChapterΒ 1
some-alt