Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Learn Introduction to Limits | Mathematical Analysis
Mathematics for Data Science

bookIntroduction to Limits

Note
Definition

A limit is a fundamental concept in calculus that describes the value a function approaches as its input nears a specific point. Limits form the basis for defining derivatives and integrals, making them essential in mathematical analysis and machine learning optimization.

Formal Definition & Notation

A limit represents the value that a function approaches as the input gets arbitrarily close to a point.

lim⁑xβ†’af(x)=L\lim_{x \rarr a}f(x) = L

This means that as xx gets arbitrarily close to aa where approaches LL.

Note
Note

The function does not need to be defined at x=ax=a for the limit to exist.

One-Sided & Two-Sided Limits

A limit can be approached from either side:

  • Left-hand limit: approaching aa from values smaller than aa: lim⁑xβ†’aβˆ’f(x)\lim_{x \rarr a^-}f(x)
  • Right-hand limit: approaching aa from values larger than aa: lim⁑xβ†’a+f(x)\lim_{x \rarr a^+}f(x)
  • The limit exists only if both one-sided limits are equal: lim⁑xβ†’aβˆ’f(x)=lim⁑xβ†’a+f(x)\lim_{x \rarr a^-}f(x) = \lim_{x \rarr a^+}f(x)

When Limits Fail to Exist

A limit does not exist in the following cases:

  • Jump discontinuity: lim⁑xβ†’aβˆ’f(x)β‰ lim⁑xβ†’a+f(x)\lim_{x \rarr a^-}f(x) \neq \lim_{x \rarr a^+}f(x)
    • Example: a step function where the left and right limits are different.
  • Infinite limit: lim⁑xβ†’01x2=∞\lim_{x \rarr 0}\frac{1}{x^2}=\infty
    • The function grows unbounded.
  • Oscillation: lim⁑xβ†’0sin⁑(1x)\lim_{x \rarr 0}\sin\left(\frac{1}{x}\right)
    • The function fluctuates infinitely without settling to a single value.

Special Case – Limits at Infinity

When xx approaches infinity, we analyze the end behavior of functions:

  • Rational functions: lim⁑xβ†’βˆž1x=0\lim_{x \rarr \infty}\frac{1}{x}=0
  • Polynomial growth: lim⁑xβ†’βˆžx2x=∞\lim_{x \rarr \infty}\frac{x^2}{x}=\infty
  • Dominant term rule: lim⁑xβ†’βˆžaxmbxn={0,Β ifΒ m<n,ab,Β ifΒ m=n,±∞,Β ifΒ m>n.\lim_{x \to \infty} \frac{a x^m}{b x^n} = \begin{cases} 0,\ \text{if } m < n,\\ \frac{a}{b},\ \text{if } m = n, \\ \pm \infty,\ \text{if } m > n. \end{cases}
question mark

Which statement correctly describes when a limit exists?

Select the correct answer

Everything was clear?

How can we improve it?

Thanks for your feedback!

SectionΒ 3. ChapterΒ 1

Ask AI

expand

Ask AI

ChatGPT

Ask anything or try one of the suggested questions to begin our chat

Awesome!

Completion rate improved to 1.96

bookIntroduction to Limits

Swipe to show menu

Note
Definition

A limit is a fundamental concept in calculus that describes the value a function approaches as its input nears a specific point. Limits form the basis for defining derivatives and integrals, making them essential in mathematical analysis and machine learning optimization.

Formal Definition & Notation

A limit represents the value that a function approaches as the input gets arbitrarily close to a point.

lim⁑xβ†’af(x)=L\lim_{x \rarr a}f(x) = L

This means that as xx gets arbitrarily close to aa where approaches LL.

Note
Note

The function does not need to be defined at x=ax=a for the limit to exist.

One-Sided & Two-Sided Limits

A limit can be approached from either side:

  • Left-hand limit: approaching aa from values smaller than aa: lim⁑xβ†’aβˆ’f(x)\lim_{x \rarr a^-}f(x)
  • Right-hand limit: approaching aa from values larger than aa: lim⁑xβ†’a+f(x)\lim_{x \rarr a^+}f(x)
  • The limit exists only if both one-sided limits are equal: lim⁑xβ†’aβˆ’f(x)=lim⁑xβ†’a+f(x)\lim_{x \rarr a^-}f(x) = \lim_{x \rarr a^+}f(x)

When Limits Fail to Exist

A limit does not exist in the following cases:

  • Jump discontinuity: lim⁑xβ†’aβˆ’f(x)β‰ lim⁑xβ†’a+f(x)\lim_{x \rarr a^-}f(x) \neq \lim_{x \rarr a^+}f(x)
    • Example: a step function where the left and right limits are different.
  • Infinite limit: lim⁑xβ†’01x2=∞\lim_{x \rarr 0}\frac{1}{x^2}=\infty
    • The function grows unbounded.
  • Oscillation: lim⁑xβ†’0sin⁑(1x)\lim_{x \rarr 0}\sin\left(\frac{1}{x}\right)
    • The function fluctuates infinitely without settling to a single value.

Special Case – Limits at Infinity

When xx approaches infinity, we analyze the end behavior of functions:

  • Rational functions: lim⁑xβ†’βˆž1x=0\lim_{x \rarr \infty}\frac{1}{x}=0
  • Polynomial growth: lim⁑xβ†’βˆžx2x=∞\lim_{x \rarr \infty}\frac{x^2}{x}=\infty
  • Dominant term rule: lim⁑xβ†’βˆžaxmbxn={0,Β ifΒ m<n,ab,Β ifΒ m=n,±∞,Β ifΒ m>n.\lim_{x \to \infty} \frac{a x^m}{b x^n} = \begin{cases} 0,\ \text{if } m < n,\\ \frac{a}{b},\ \text{if } m = n, \\ \pm \infty,\ \text{if } m > n. \end{cases}
question mark

Which statement correctly describes when a limit exists?

Select the correct answer

Everything was clear?

How can we improve it?

Thanks for your feedback!

SectionΒ 3. ChapterΒ 1
some-alt