CSV Files
Since pandas is the go-to library for data analysis and manipulation, one of its key features is its ability to read and write various file types, including CSV files.
A CSV (Comma-Separated Values) file is a plain text file used to store tabular data, where each row represents a record, and columns are separated by commas.
A CSV file can contain the following data:
- Numbers: integer or decimal values (e.g.,
42,3.14); - Text: strings or categorical data (e.g.,
John,Active); - Dates/Times: timestamps (e.g.,
2023-12-30); - Booleans: logical values (
True,False).
Each row must have the same number of columns, and the first row often contains column headers.
Functions like read_csv() and to_csv() come in handy for dealing with CSV data.
The basic syntax of read_csv() and key parameters are as follows:
Hereβs the updated version with the index_col parameter added and explained clearly:
pandas.read_csv(filepath_or_buffer, sep=',', header=0, names=None, usecols=None, index_col=None, ...)
filepath_or_buffer: path to the CSV file (string or URL);sep: delimiter (default is a comma,);header: row number to use as the column headers (default is the first row);names: list of column names to use;usecols: subset of columns to read;index_col: column (or list of columns) to set as the DataFrame index.
12345# Loading the CSV into a `DataFrame` import pandas as pd salary_data = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/a43d24b6-df61-4e11-9c90-5b36552b3437/Salary+Dataset.csv') print(salary_data)
Make sure that the dataset link is wrapped in quotation marks.
The basic syntax of to_csv() and key parameters are as follows:
pandas.DataFrame.to_csv(path_or_buf=None, sep=',', ..., columns=None, header=True, index=True, ...)
path_or_buf: file path or object where the CSV should be written;sep: delimiter for separating values (default is a comma,);columns: subset of columns to write (default is all columns);header: whether to include column names as the header (default isTrue);index: whether to write row indices to the file (default isTrue).
1234567import pandas as pd countries_data = {'country' : ['Thailand', 'Philippines', 'Monaco', 'Malta', 'Sweden', 'Paraguay', 'Latvia'], 'continent' : ['Asia', 'Asia', 'Europe', 'Europe', 'Europe', 'South America', 'Europe'], 'capital':['Bangkok', 'Manila', 'Monaco', 'Valletta', 'Stockholm', 'Asuncion', 'Riga']} countries = pd.DataFrame(countries_data) countries.to_csv('countries.csv') print('Done')
Swipe to start coding
You are given a URL to a CSV file stored as a string in the file_url variable.
- Read the CSV file from the given URL into a
DataFramenamedwine_data.
Solution
Thanks for your feedback!
single
Ask AI
Ask AI
Ask anything or try one of the suggested questions to begin our chat
What does the `index_col` parameter do in `read_csv()`?
Can you explain the difference between `header` and `names` in `read_csv()`?
How can I read only specific columns from a CSV file using pandas?
Awesome!
Completion rate improved to 3.03
CSV Files
Swipe to show menu
Since pandas is the go-to library for data analysis and manipulation, one of its key features is its ability to read and write various file types, including CSV files.
A CSV (Comma-Separated Values) file is a plain text file used to store tabular data, where each row represents a record, and columns are separated by commas.
A CSV file can contain the following data:
- Numbers: integer or decimal values (e.g.,
42,3.14); - Text: strings or categorical data (e.g.,
John,Active); - Dates/Times: timestamps (e.g.,
2023-12-30); - Booleans: logical values (
True,False).
Each row must have the same number of columns, and the first row often contains column headers.
Functions like read_csv() and to_csv() come in handy for dealing with CSV data.
The basic syntax of read_csv() and key parameters are as follows:
Hereβs the updated version with the index_col parameter added and explained clearly:
pandas.read_csv(filepath_or_buffer, sep=',', header=0, names=None, usecols=None, index_col=None, ...)
filepath_or_buffer: path to the CSV file (string or URL);sep: delimiter (default is a comma,);header: row number to use as the column headers (default is the first row);names: list of column names to use;usecols: subset of columns to read;index_col: column (or list of columns) to set as the DataFrame index.
12345# Loading the CSV into a `DataFrame` import pandas as pd salary_data = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/a43d24b6-df61-4e11-9c90-5b36552b3437/Salary+Dataset.csv') print(salary_data)
Make sure that the dataset link is wrapped in quotation marks.
The basic syntax of to_csv() and key parameters are as follows:
pandas.DataFrame.to_csv(path_or_buf=None, sep=',', ..., columns=None, header=True, index=True, ...)
path_or_buf: file path or object where the CSV should be written;sep: delimiter for separating values (default is a comma,);columns: subset of columns to write (default is all columns);header: whether to include column names as the header (default isTrue);index: whether to write row indices to the file (default isTrue).
1234567import pandas as pd countries_data = {'country' : ['Thailand', 'Philippines', 'Monaco', 'Malta', 'Sweden', 'Paraguay', 'Latvia'], 'continent' : ['Asia', 'Asia', 'Europe', 'Europe', 'Europe', 'South America', 'Europe'], 'capital':['Bangkok', 'Manila', 'Monaco', 'Valletta', 'Stockholm', 'Asuncion', 'Riga']} countries = pd.DataFrame(countries_data) countries.to_csv('countries.csv') print('Done')
Swipe to start coding
You are given a URL to a CSV file stored as a string in the file_url variable.
- Read the CSV file from the given URL into a
DataFramenamedwine_data.
Solution
Thanks for your feedback!
single