CSV Files
Since pandas
is the go-to library for data analysis and manipulation, one of its key features is its ability to read and write various file types, including CSV files.
A CSV (Comma-Separated Values) file is a plain text file used to store tabular data, where each row represents a record, and columns are separated by commas.
A CSV file can contain the following data:
- Numbers: integer or decimal values (e.g.,
42
,3.14
); - Text: strings or categorical data (e.g.,
John
,Active
); - Dates/Times: timestamps (e.g.,
2023-12-30
); - Booleans: logical values (
True
,False
).
Each row must have the same number of columns, and the first row often contains column headers.
Functions like read_csv()
and to_csv()
come in handy for dealing with CSV data.
The basic syntax of read_csv()
and key parameters are as follows:
pandas.read_csv(filepath_or_buffer, sep=',', header=0, names=None, usecols=None, ...)
filepath_or_buffer
: path to the CSV file (string or URL);sep
: delimiter (default is a comma,
);header
: row number to use as the column headers (default is the first row);names
: List of column names to use;usecols
: olumns to read (subset of columns).
12345# Loading the CSV into a `DataFrame` import pandas as pd salary_data = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/a43d24b6-df61-4e11-9c90-5b36552b3437/Salary+Dataset.csv') print(salary_data)
Note
Make sure that the dataset link is wrapped in quotation marks.
The basic syntax of to_csv()
and key parameters are as follows:
pandas.DataFrame.to_csv(path_or_buf=None, sep=',', ..., columns=None, header=True, index=True, ...)
path_or_buf
: file path or object where the CSV should be written;sep
: delimiter for separating values (default is a comma,
);columns
: subset of columns to write (default is all columns);header
: whether to include column names as the header (default isTrue
);index
: whether to write row indices to the file (default isTrue
).
1234567import pandas as pd countries_data = {'country' : ['Thailand', 'Philippines', 'Monaco', 'Malta', 'Sweden', 'Paraguay', 'Latvia'], 'continent' : ['Asia', 'Asia', 'Europe', 'Europe', 'Europe', 'South America', 'Europe'], 'capital':['Bangkok', 'Manila', 'Monaco', 'Valletta', 'Stockholm', 'Asuncion', 'Riga']} countries = pd.DataFrame(countries_data) countries.to_csv('countries.csv') print('Done')
Swipe to start coding
You are given a URL to a CSV file stored as a string in the file_url
variable.
- Read the CSV file from the given URL into a
DataFrame
namedwine_data
.
Solution
Thanks for your feedback!
single
Ask AI
Ask AI
Ask anything or try one of the suggested questions to begin our chat
Awesome!
Completion rate improved to 3.03
CSV Files
Swipe to show menu
Since pandas
is the go-to library for data analysis and manipulation, one of its key features is its ability to read and write various file types, including CSV files.
A CSV (Comma-Separated Values) file is a plain text file used to store tabular data, where each row represents a record, and columns are separated by commas.
A CSV file can contain the following data:
- Numbers: integer or decimal values (e.g.,
42
,3.14
); - Text: strings or categorical data (e.g.,
John
,Active
); - Dates/Times: timestamps (e.g.,
2023-12-30
); - Booleans: logical values (
True
,False
).
Each row must have the same number of columns, and the first row often contains column headers.
Functions like read_csv()
and to_csv()
come in handy for dealing with CSV data.
The basic syntax of read_csv()
and key parameters are as follows:
pandas.read_csv(filepath_or_buffer, sep=',', header=0, names=None, usecols=None, ...)
filepath_or_buffer
: path to the CSV file (string or URL);sep
: delimiter (default is a comma,
);header
: row number to use as the column headers (default is the first row);names
: List of column names to use;usecols
: olumns to read (subset of columns).
12345# Loading the CSV into a `DataFrame` import pandas as pd salary_data = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/a43d24b6-df61-4e11-9c90-5b36552b3437/Salary+Dataset.csv') print(salary_data)
Note
Make sure that the dataset link is wrapped in quotation marks.
The basic syntax of to_csv()
and key parameters are as follows:
pandas.DataFrame.to_csv(path_or_buf=None, sep=',', ..., columns=None, header=True, index=True, ...)
path_or_buf
: file path or object where the CSV should be written;sep
: delimiter for separating values (default is a comma,
);columns
: subset of columns to write (default is all columns);header
: whether to include column names as the header (default isTrue
);index
: whether to write row indices to the file (default isTrue
).
1234567import pandas as pd countries_data = {'country' : ['Thailand', 'Philippines', 'Monaco', 'Malta', 'Sweden', 'Paraguay', 'Latvia'], 'continent' : ['Asia', 'Asia', 'Europe', 'Europe', 'Europe', 'South America', 'Europe'], 'capital':['Bangkok', 'Manila', 'Monaco', 'Valletta', 'Stockholm', 'Asuncion', 'Riga']} countries = pd.DataFrame(countries_data) countries.to_csv('countries.csv') print('Done')
Swipe to start coding
You are given a URL to a CSV file stored as a string in the file_url
variable.
- Read the CSV file from the given URL into a
DataFrame
namedwine_data
.
Solution
Thanks for your feedback!
Awesome!
Completion rate improved to 3.03single