Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Filling Null Values | Analyzing the Data
course content

Course Content

Pandas First Steps

Filling Null ValuesFilling Null Values

To handle NaN values while retaining each row of the dataframe, we can utilize the fillna() function. This allows us to populate each empty cell with a specific value (like a string or number) rather than eliminating it.

To replace NaN values with the number 0:

Task

You're working with a dataframe named data_frame. Your goal is to replace the NaN values in this dataframe with the string 'no'.

Everything was clear?

Section 3. Chapter 9
toggle bottom row
course content

Course Content

Pandas First Steps

Filling Null ValuesFilling Null Values

To handle NaN values while retaining each row of the dataframe, we can utilize the fillna() function. This allows us to populate each empty cell with a specific value (like a string or number) rather than eliminating it.

To replace NaN values with the number 0:

Task

You're working with a dataframe named data_frame. Your goal is to replace the NaN values in this dataframe with the string 'no'.

Everything was clear?

Section 3. Chapter 9
toggle bottom row
some-alt