Course Content
Pandas First Steps
Pandas First Steps
Inserting a New Column
Let's explore the second technique for adding a column to a DataFrame. This approach utilizes the insert()
method. Here's the syntax:
dataframe
: The name of the existing DataFrame;insert()
: The method used for adding new columns;column_index
: The position where the new column will be inserted (keep in mind that indexing starts at 0);column_name
: The name for the new column;[value_1, value_2, value_3]
: The values that will populate the new column.
Now let's turn our attention to the countries
DataFrame. We'll demonstrate how to add a new column named population
, representing the populations of countries, right after the first column (country
).
import pandas as pd dataset = {'country' : ['Thailand', 'Philippines', 'Monaco', 'Malta', 'Sweden', 'Paraguay', 'Latvia'], 'continent' : ['Asia', 'Asia', 'Europe', 'Europe', 'Europe', 'South America', 'Europe'], 'capital':['Bangkok', 'Manila', 'Monaco', 'Valletta', 'Stockholm', 'Asuncion', 'Riga']} countries = pd.DataFrame(dataset) countries.insert(1, 'population', [61399000, 75967000, 39244, 380200, 10380491, 5496000, 2424200]) print(countries)
Note
A key benefit of the
insert()
method is that it allows you to specify the position of the new column within the DataFrame.
Swipe to show code editor
- Using the
dataset
data, create theaudi_cars
DataFrame. - Insert a column named
'price'
between theyear
andfueltype
columns. Use the.insert()
method and populate it with the following values:[12500, 16500, 16800, 17300, 13900]
.
Thanks for your feedback!
Inserting a New Column
Let's explore the second technique for adding a column to a DataFrame. This approach utilizes the insert()
method. Here's the syntax:
dataframe
: The name of the existing DataFrame;insert()
: The method used for adding new columns;column_index
: The position where the new column will be inserted (keep in mind that indexing starts at 0);column_name
: The name for the new column;[value_1, value_2, value_3]
: The values that will populate the new column.
Now let's turn our attention to the countries
DataFrame. We'll demonstrate how to add a new column named population
, representing the populations of countries, right after the first column (country
).
import pandas as pd dataset = {'country' : ['Thailand', 'Philippines', 'Monaco', 'Malta', 'Sweden', 'Paraguay', 'Latvia'], 'continent' : ['Asia', 'Asia', 'Europe', 'Europe', 'Europe', 'South America', 'Europe'], 'capital':['Bangkok', 'Manila', 'Monaco', 'Valletta', 'Stockholm', 'Asuncion', 'Riga']} countries = pd.DataFrame(dataset) countries.insert(1, 'population', [61399000, 75967000, 39244, 380200, 10380491, 5496000, 2424200]) print(countries)
Note
A key benefit of the
insert()
method is that it allows you to specify the position of the new column within the DataFrame.
Swipe to show code editor
- Using the
dataset
data, create theaudi_cars
DataFrame. - Insert a column named
'price'
between theyear
andfueltype
columns. Use the.insert()
method and populate it with the following values:[12500, 16500, 16800, 17300, 13900]
.
Thanks for your feedback!
Inserting a New Column
Let's explore the second technique for adding a column to a DataFrame. This approach utilizes the insert()
method. Here's the syntax:
dataframe
: The name of the existing DataFrame;insert()
: The method used for adding new columns;column_index
: The position where the new column will be inserted (keep in mind that indexing starts at 0);column_name
: The name for the new column;[value_1, value_2, value_3]
: The values that will populate the new column.
Now let's turn our attention to the countries
DataFrame. We'll demonstrate how to add a new column named population
, representing the populations of countries, right after the first column (country
).
import pandas as pd dataset = {'country' : ['Thailand', 'Philippines', 'Monaco', 'Malta', 'Sweden', 'Paraguay', 'Latvia'], 'continent' : ['Asia', 'Asia', 'Europe', 'Europe', 'Europe', 'South America', 'Europe'], 'capital':['Bangkok', 'Manila', 'Monaco', 'Valletta', 'Stockholm', 'Asuncion', 'Riga']} countries = pd.DataFrame(dataset) countries.insert(1, 'population', [61399000, 75967000, 39244, 380200, 10380491, 5496000, 2424200]) print(countries)
Note
A key benefit of the
insert()
method is that it allows you to specify the position of the new column within the DataFrame.
Swipe to show code editor
- Using the
dataset
data, create theaudi_cars
DataFrame. - Insert a column named
'price'
between theyear
andfueltype
columns. Use the.insert()
method and populate it with the following values:[12500, 16500, 16800, 17300, 13900]
.
Thanks for your feedback!
Let's explore the second technique for adding a column to a DataFrame. This approach utilizes the insert()
method. Here's the syntax:
dataframe
: The name of the existing DataFrame;insert()
: The method used for adding new columns;column_index
: The position where the new column will be inserted (keep in mind that indexing starts at 0);column_name
: The name for the new column;[value_1, value_2, value_3]
: The values that will populate the new column.
Now let's turn our attention to the countries
DataFrame. We'll demonstrate how to add a new column named population
, representing the populations of countries, right after the first column (country
).
import pandas as pd dataset = {'country' : ['Thailand', 'Philippines', 'Monaco', 'Malta', 'Sweden', 'Paraguay', 'Latvia'], 'continent' : ['Asia', 'Asia', 'Europe', 'Europe', 'Europe', 'South America', 'Europe'], 'capital':['Bangkok', 'Manila', 'Monaco', 'Valletta', 'Stockholm', 'Asuncion', 'Riga']} countries = pd.DataFrame(dataset) countries.insert(1, 'population', [61399000, 75967000, 39244, 380200, 10380491, 5496000, 2424200]) print(countries)
Note
A key benefit of the
insert()
method is that it allows you to specify the position of the new column within the DataFrame.
Swipe to show code editor
- Using the
dataset
data, create theaudi_cars
DataFrame. - Insert a column named
'price'
between theyear
andfueltype
columns. Use the.insert()
method and populate it with the following values:[12500, 16500, 16800, 17300, 13900]
.