Challenge: Using iloc
The DataFrame we are working with:
You can also use negative indexing to access rows in the DataFrame. Negative indexing starts from the end of the DataFrame: index -1
points to the last row, -2
to the second to last, and so on.
To access the seventh row (which refers to Latvia), you can use either index 6 or -1.
123456import pandas countries_data = {'country' : ['Thailand', 'Philippines', 'Monaco', 'Malta', 'Sweden', 'Paraguay', 'Latvia'], 'continent' : ['Asia', 'Asia', 'Europe', 'Europe', 'Europe', 'South America', 'Europe'], 'capital':['Bangkok', 'Manila', 'Monaco', 'Valletta', 'Stockholm', 'Asuncion', 'Riga']} countries = pandas.DataFrame(countries_data) # Accessing to the seventh row using negative indexing print(countries.iloc[-1])
Running the above code will return the row highlighted in the image below:
Swipe to start coding
You are given a DataFrame
named audi_cars
.
-
Display all the details from the
DataFrame
for the'Audi A1'
model from the year 2017 and store the result in theaudi_A1_2017
variable. -
Display all the details from the
DataFrame
for the'Audi A1'
model from the year 2016 and store the result in theaudi_A1_2016
variable. -
Display all the details from the
DataFrame
for theAudi A3
model and store the result in theaudi_A3
variable.

Solution
Thanks for your feedback!
single
Ask AI
Ask AI
Ask anything or try one of the suggested questions to begin our chat
Awesome!
Completion rate improved to 3.03Awesome!
Completion rate improved to 3.03
Challenge: Using iloc
The DataFrame we are working with:
You can also use negative indexing to access rows in the DataFrame. Negative indexing starts from the end of the DataFrame: index -1
points to the last row, -2
to the second to last, and so on.
To access the seventh row (which refers to Latvia), you can use either index 6 or -1.
123456import pandas countries_data = {'country' : ['Thailand', 'Philippines', 'Monaco', 'Malta', 'Sweden', 'Paraguay', 'Latvia'], 'continent' : ['Asia', 'Asia', 'Europe', 'Europe', 'Europe', 'South America', 'Europe'], 'capital':['Bangkok', 'Manila', 'Monaco', 'Valletta', 'Stockholm', 'Asuncion', 'Riga']} countries = pandas.DataFrame(countries_data) # Accessing to the seventh row using negative indexing print(countries.iloc[-1])
Running the above code will return the row highlighted in the image below:
Swipe to start coding
You are given a DataFrame
named audi_cars
.
-
Display all the details from the
DataFrame
for the'Audi A1'
model from the year 2017 and store the result in theaudi_A1_2017
variable. -
Display all the details from the
DataFrame
for the'Audi A1'
model from the year 2016 and store the result in theaudi_A1_2016
variable. -
Display all the details from the
DataFrame
for theAudi A3
model and store the result in theaudi_A3
variable.

Solution
Thanks for your feedback!
single
Awesome!
Completion rate improved to 3.03
Challenge: Using iloc
Swipe to show menu
The DataFrame we are working with:
You can also use negative indexing to access rows in the DataFrame. Negative indexing starts from the end of the DataFrame: index -1
points to the last row, -2
to the second to last, and so on.
To access the seventh row (which refers to Latvia), you can use either index 6 or -1.
123456import pandas countries_data = {'country' : ['Thailand', 'Philippines', 'Monaco', 'Malta', 'Sweden', 'Paraguay', 'Latvia'], 'continent' : ['Asia', 'Asia', 'Europe', 'Europe', 'Europe', 'South America', 'Europe'], 'capital':['Bangkok', 'Manila', 'Monaco', 'Valletta', 'Stockholm', 'Asuncion', 'Riga']} countries = pandas.DataFrame(countries_data) # Accessing to the seventh row using negative indexing print(countries.iloc[-1])
Running the above code will return the row highlighted in the image below:
Swipe to start coding
You are given a DataFrame
named audi_cars
.
-
Display all the details from the
DataFrame
for the'Audi A1'
model from the year 2017 and store the result in theaudi_A1_2017
variable. -
Display all the details from the
DataFrame
for the'Audi A1'
model from the year 2016 and store the result in theaudi_A1_2016
variable. -
Display all the details from the
DataFrame
for theAudi A3
model and store the result in theaudi_A3
variable.

Solution
Thanks for your feedback!