Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Learn Paired t-test | Statistical Testing
Learning Statistics with Python

Swipe to show menu

book
Paired t-test

The following function conducts a paired t-test:

python

This process resembles the one used for independent samples, but here we do not need to check the homogeneity of variance. The paired t-test explicitly does not assume that variances are equal.

Keep in mind that for a paired t-test, it's crucial that the sample sizes are equal.

With this information in mind, you can proceed to the task of conducting a paired t-test.

Here, you have data regarding the number of downloads for a particular app. Take a look at the samples: the mean values are nearly identical.

123456789101112
import pandas as pd import matplotlib.pyplot as plt # Read the data before = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/a849660e-ddfa-4033-80a6-94a1b7772e23/Testing2.0/before.csv').squeeze() after = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/a849660e-ddfa-4033-80a6-94a1b7772e23/Testing2.0/after.csv').squeeze() # Plot histograms plt.hist(before, alpha=0.7) plt.hist(after, alpha=0.7) # Plot the means plt.axvline(before.mean(), color='blue', linestyle='dashed') plt.axvline(after.mean(), color='gold', linestyle='dashed')
copy
Task

Swipe to start coding

Hypotheses are established:

  • Hβ‚€: The mean number of downloads before and after the changes is the same;
  • Hₐ: The mean number of downloads is greater after the modifications.

Conduct a paired t-test with this alternative hypothesis, using before and after as the samples.

Solution

Switch to desktopSwitch to desktop for real-world practiceContinue from where you are using one of the options below
Everything was clear?

How can we improve it?

Thanks for your feedback!

SectionΒ 6. ChapterΒ 8

Ask AI

expand
ChatGPT

Ask anything or try one of the suggested questions to begin our chat

book
Paired t-test

The following function conducts a paired t-test:

python

This process resembles the one used for independent samples, but here we do not need to check the homogeneity of variance. The paired t-test explicitly does not assume that variances are equal.

Keep in mind that for a paired t-test, it's crucial that the sample sizes are equal.

With this information in mind, you can proceed to the task of conducting a paired t-test.

Here, you have data regarding the number of downloads for a particular app. Take a look at the samples: the mean values are nearly identical.

123456789101112
import pandas as pd import matplotlib.pyplot as plt # Read the data before = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/a849660e-ddfa-4033-80a6-94a1b7772e23/Testing2.0/before.csv').squeeze() after = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/a849660e-ddfa-4033-80a6-94a1b7772e23/Testing2.0/after.csv').squeeze() # Plot histograms plt.hist(before, alpha=0.7) plt.hist(after, alpha=0.7) # Plot the means plt.axvline(before.mean(), color='blue', linestyle='dashed') plt.axvline(after.mean(), color='gold', linestyle='dashed')
copy
Task

Swipe to start coding

Hypotheses are established:

  • Hβ‚€: The mean number of downloads before and after the changes is the same;
  • Hₐ: The mean number of downloads is greater after the modifications.

Conduct a paired t-test with this alternative hypothesis, using before and after as the samples.

Solution

Switch to desktopSwitch to desktop for real-world practiceContinue from where you are using one of the options below
Everything was clear?

How can we improve it?

Thanks for your feedback!

SectionΒ 6. ChapterΒ 8
Switch to desktopSwitch to desktop for real-world practiceContinue from where you are using one of the options below
We're sorry to hear that something went wrong. What happened?
some-alt