Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Learn The Multiplication Rule of Probability | Probability of Complex Events
Probability Theory Basics

bookThe Multiplication Rule of Probability

We have already considered that if events A and B are independent, then:
P(A and B) = P(A) *P(B).
This formula is a special case of the more general probabilities multiplication rule:

It states that the probability of the joint occurrence of two events, A and B, is equal to the probability of event A multiplied by event B's conditional probability, given that event A has occurred.

Example

Assume you draw two cards from a standard deck (52 cards) without replacement. What is the probability of drawing a heart on the first card and a diamond on the second?
Event A - drawing a heart first. Event B - drawing a diamond second.

1234567891011121314151617181920212223242526
import numpy as np # Creating a deck of 52 cards suits = ['H', 'D', 'C', 'S'] # Hearts, Diamonds, Clubs, Spades ranks = ['2', '3', '4', '5', '6', '7', '8', '9', '10', 'J', 'Q', 'K', 'A'] deck = [rank + suit for suit in suits for rank in ranks] # Counting the number of cards in the deck total_cards = len(deck) # Counting the number of hearts and diamonds in the deck hearts = sum(card[-1] == 'H' for card in deck) diamonds = sum(card[-1] == 'D' for card in deck) # Calculating P(A) p_A = hearts / total_cards # Calculating P(B|A) # We have already removed one heart from the deck # Total number of cards has become 1 less # As a result conditional probability can be calculated p_B_cond_A = diamonds / (total_cards - 1) # Resulting probability due to multiplication rule p = p_A * p_B_cond_A print(f'Resulting probability is {p:.4f}')
copy

Note

Pay attention that in the multiplication probabilities rule, the order in which events occur is unimportant - we can consider both the probability P(B)*P(A|B) and P(A)*P(B|A).

Everything was clear?

How can we improve it?

Thanks for your feedback!

SectionΒ 2. ChapterΒ 3

Ask AI

expand

Ask AI

ChatGPT

Ask anything or try one of the suggested questions to begin our chat

Awesome!

Completion rate improved to 3.85

bookThe Multiplication Rule of Probability

Swipe to show menu

We have already considered that if events A and B are independent, then:
P(A and B) = P(A) *P(B).
This formula is a special case of the more general probabilities multiplication rule:

It states that the probability of the joint occurrence of two events, A and B, is equal to the probability of event A multiplied by event B's conditional probability, given that event A has occurred.

Example

Assume you draw two cards from a standard deck (52 cards) without replacement. What is the probability of drawing a heart on the first card and a diamond on the second?
Event A - drawing a heart first. Event B - drawing a diamond second.

1234567891011121314151617181920212223242526
import numpy as np # Creating a deck of 52 cards suits = ['H', 'D', 'C', 'S'] # Hearts, Diamonds, Clubs, Spades ranks = ['2', '3', '4', '5', '6', '7', '8', '9', '10', 'J', 'Q', 'K', 'A'] deck = [rank + suit for suit in suits for rank in ranks] # Counting the number of cards in the deck total_cards = len(deck) # Counting the number of hearts and diamonds in the deck hearts = sum(card[-1] == 'H' for card in deck) diamonds = sum(card[-1] == 'D' for card in deck) # Calculating P(A) p_A = hearts / total_cards # Calculating P(B|A) # We have already removed one heart from the deck # Total number of cards has become 1 less # As a result conditional probability can be calculated p_B_cond_A = diamonds / (total_cards - 1) # Resulting probability due to multiplication rule p = p_A * p_B_cond_A print(f'Resulting probability is {p:.4f}')
copy

Note

Pay attention that in the multiplication probabilities rule, the order in which events occur is unimportant - we can consider both the probability P(B)*P(A|B) and P(A)*P(B|A).

Everything was clear?

How can we improve it?

Thanks for your feedback!

SectionΒ 2. ChapterΒ 3
some-alt