Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Data Preprocessing | Tweet Sentiment Analysis
Tweet Sentiment Analysis
course content

Kursusindhold

Tweet Sentiment Analysis

book
Data Preprocessing

Data preprocessing refers to the techniques used to prepare raw data for further analysis or modeling. The goal of preprocessing is to clean, transform, and format the data so that it can be used effectively in an analysis or model.

Methods description

  • The .dropna() method in Pandas is used to remove rows or columns with missing values (NaN). Setting inplace=True modifies the DataFrame in place, meaning the changes are applied directly to the original DataFrame, and it returns None;

  • The .drop_duplicates() method is used to remove duplicate rows from the DataFrame. Setting inplace=True modifies the DataFrame in place, removing duplicate rows, and it returns None.

Opgave

Swipe to start coding

  1. Drop NaNs from our dataset.

  2. Drop duplicates from our dataset.

Løsning

Mark tasks as Completed
Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 1. Kapitel 4
AVAILABLE TO ULTIMATE ONLY
Vi beklager, at noget gik galt. Hvad skete der?
some-alt