Linear Algebra Operations
NumPy
offers a plethora of functions for executing linear algebra operations on arrays, including matrix multiplication, transposition, inversion, and decomposition. Key functions include:
dot()
: Computes the dot product of two arrays;transpose()
: Transposes an array;inv()
: Computes the inverse of a matrix;linalg.svd()
: Performs the singular value decomposition of a matrix;linalg.eig()
: Determines the eigenvalues and eigenvectors of a matrix.
Opgave
Swipe to start coding
- Compute the dot product of the arrays.
- Transpose the first array.
- Compute the inverse of the second array.
Løsning
Mark tasks as Completed
Var alt klart?
Tak for dine kommentarer!
Sektion 1. Kapitel 5
Spørg AI
Spørg AI
Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat
Awesome!
Completion rate improved to 14.29
Linear Algebra Operations
NumPy
offers a plethora of functions for executing linear algebra operations on arrays, including matrix multiplication, transposition, inversion, and decomposition. Key functions include:
dot()
: Computes the dot product of two arrays;transpose()
: Transposes an array;inv()
: Computes the inverse of a matrix;linalg.svd()
: Performs the singular value decomposition of a matrix;linalg.eig()
: Determines the eigenvalues and eigenvectors of a matrix.
Opgave
Swipe to start coding
- Compute the dot product of the arrays.
- Transpose the first array.
- Compute the inverse of the second array.
Løsning
Mark tasks as Completed
Var alt klart?
Tak for dine kommentarer!
Sektion 1. Kapitel 5