Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Regexp Tokenizer | Identifying the Most Frequent Words in Text
Identifying the Most Frequent Words in Text
course content

Contenido del Curso

Identifying the Most Frequent Words in Text

bookRegexp Tokenizer

RegexpTokenizer is a class in NLTK designed for tokenizing text data with the use of regular expressions. These expressions are powerful patterns capable of matching specific sequences in text, like words or punctuation marks.

The RegexpTokenizer is particularly advantageous for scenarios demanding customized tokenization.

Tarea
test

Swipe to show code editor

  1. Import the RegexpTokenizer for tokenization based on a regular expression pattern from NLTK.
  2. Create a tokenizer that splits text into words using a specific regular expression.
  3. Tokenize the lemmatized words to create a list of words.

Mark tasks as Completed
Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

RegexpTokenizer is a class in NLTK designed for tokenizing text data with the use of regular expressions. These expressions are powerful patterns capable of matching specific sequences in text, like words or punctuation marks.

The RegexpTokenizer is particularly advantageous for scenarios demanding customized tokenization.

Tarea
test

Swipe to show code editor

  1. Import the RegexpTokenizer for tokenization based on a regular expression pattern from NLTK.
  2. Create a tokenizer that splits text into words using a specific regular expression.
  3. Tokenize the lemmatized words to create a list of words.

Mark tasks as Completed
Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
Sección 1. Capítulo 9
AVAILABLE TO ULTIMATE ONLY
We're sorry to hear that something went wrong. What happened?
some-alt