Linear Algebra Operations
NumPy
offers a plethora of functions for executing linear algebra operations on arrays, including matrix multiplication, transposition, inversion, and decomposition. Key functions include:
dot()
: Computes the dot product of two arrays;transpose()
: Transposes an array;inv()
: Computes the inverse of a matrix;linalg.svd()
: Performs the singular value decomposition of a matrix;linalg.eig()
: Determines the eigenvalues and eigenvectors of a matrix.
Tarea
Swipe to start coding
- Compute the dot product of the arrays.
- Transpose the first array.
- Compute the inverse of the second array.
Solución
import numpy as np
# Create two NumPy arrays
a = np.array([[1, 2], [3, 4]])
b = np.array([[5, 6], [7, 8]])
# Calculate the dot product of the arrays
dot_product = np.dot(a, b)
# Transpose the first array
a_transposed = np.transpose(a)
# Calculate the inverse of the second array
b_inverse = np.linalg.inv(b)
display(dot_product, a_transposed, b_inverse)
Mark tasks as Completed
¿Todo estuvo claro?
¡Gracias por tus comentarios!
Sección 1. Capítulo 5
AVAILABLE TO ULTIMATE ONLY