Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Linear Algebra Operations | Getting into NumPy Basics
Getting into NumPy Basics

book
Linear Algebra Operations

NumPy offers a plethora of functions for executing linear algebra operations on arrays, including matrix multiplication, transposition, inversion, and decomposition. Key functions include:

  • dot(): Computes the dot product of two arrays;
  • transpose(): Transposes an array;
  • inv(): Computes the inverse of a matrix;
  • linalg.svd(): Performs the singular value decomposition of a matrix;
  • linalg.eig(): Determines the eigenvalues and eigenvectors of a matrix.
Tarea

Swipe to start coding

  1. Compute the dot product of the arrays.
  2. Transpose the first array.
  3. Compute the inverse of the second array.

Solución

import numpy as np

# Create two NumPy arrays
a = np.array([[1, 2], [3, 4]])
b = np.array([[5, 6], [7, 8]])

# Calculate the dot product of the arrays
dot_product = np.dot(a, b)

# Transpose the first array
a_transposed = np.transpose(a)

# Calculate the inverse of the second array
b_inverse = np.linalg.inv(b)

display(dot_product, a_transposed, b_inverse)

Mark tasks as Completed
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 1. Capítulo 5
AVAILABLE TO ULTIMATE ONLY
some-alt