Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Linear Algebra Operations | Getting into NumPy Basics
Getting into NumPy Basics
course content

Contenido del Curso

Getting into NumPy Basics

test

Swipe to show menu

book
Linear Algebra Operations

NumPy offers a plethora of functions for executing linear algebra operations on arrays, including matrix multiplication, transposition, inversion, and decomposition. Key functions include:

  • dot(): Computes the dot product of two arrays;
  • transpose(): Transposes an array;
  • inv(): Computes the inverse of a matrix;
  • linalg.svd(): Performs the singular value decomposition of a matrix;
  • linalg.eig(): Determines the eigenvalues and eigenvectors of a matrix.
Tarea
test

Swipe to show code editor

  1. Compute the dot product of the arrays.
  2. Transpose the first array.
  3. Compute the inverse of the second array.

Solución

Mark tasks as Completed
Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 1. Capítulo 5
AVAILABLE TO ULTIMATE ONLY
We're sorry to hear that something went wrong. What happened?
some-alt