Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Rolling | Time Series
Time Series Essentials
course content

Contenido del Curso

Time Series Essentials

book
Rolling

The rolling method in Python is used to create a rolling window of a certain size on a time series or other data. It takes one or more parameters: the window size, and optionally the type of window (e.g. boxcar, hamming, etc.). It returns a new object that behaves like a moving window on the original data. You can then perform various operations on this windowed data, such as calculating the mean, sum, or standard deviation.

Methods description

  • rolling(window): This method creates a Rolling object that represents a rolling window calculation over the DataFrame. The window parameter specifies the size of the rolling window;

  • mean(): This method calculates the mean value over the rolling window. It returns a new DataFrame containing the rolling mean values;

  • print(df): This function prints the rolling mean DataFrame to the console.

Tarea
test

Swipe to show code editor

  1. Create a rolling window of size 3.
  2. Calculate the rolling_mean.
  3. Print the variable.

Mark tasks as Completed
Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 1. Capítulo 7
We're sorry to hear that something went wrong. What happened?
some-alt