Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara Data Preprocessing | Identifying Spam Emails
Identifying Spam Emails
course content

Contenuti del Corso

Identifying Spam Emails

book
Data Preprocessing

CountVectorizer is a feature extraction tool in Natural Language Processing (NLP) that converts a collection of text documents into a matrix of token counts.

It begins by tokenizing the input text, building a vocabulary of known words. It then counts the occurrences of each word in the text and constructs a matrix where each row represents a document, and each column represents a word from the vocabulary.

This matrix can be used as input for various machine learning models to perform text classification, sentiment analysis, and other NLP tasks. Additionally, CountVectorizer can be configured to include preprocessing steps such as removing stopwords and performing stemming or lemmatization.

Compito

Swipe to start coding

  1. Import the CountVectorizer class.
  2. Initialize it and store the instance in the count_vectorizer variable.
  3. Fit it to the training data (X_train) using the correct method.
  4. Create the document term matrix using the .transform() method.
  5. Transform the resulting matrix into an array using the .toarray() method.

Soluzione

Mark tasks as Completed
Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 1. Capitolo 9
AVAILABLE TO ULTIMATE ONLY
Siamo spiacenti che qualcosa sia andato storto. Cosa è successo?
some-alt