Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Data Preprocessing | Identifying Fake News
Identifying Fake News
course content

Kursinnhold

Identifying Fake News

book
Data Preprocessing

As a mandatory step in our analysis, we must preprocess our data. Data preprocessing is the process of cleaning, transforming, and organizing the data to make it more suitable for analysis and modeling. This typically involves several steps, such as the following:

  • removing missing or duplicate values;

  • correcting inconsistencies;

  • transforming the data into a format that is easier to manage.

Oppgave

Swipe to start coding

  1. Remove unnecessary columns (for our further analysis): 'title', 'subject', and 'date'.

  2. Use the appropriate method to remove duplicates.

  3. Use the appropriate methods to shuffle the DataFrame and reset its index.

  4. Use the appropriate method to check for missing values (NaN values).

Løsning

Mark tasks as Completed
Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 1. Kapittel 3
AVAILABLE TO ULTIMATE ONLY
Vi beklager at noe gikk galt. Hva skjedde?
some-alt