Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Leer Data Preprocessing | Tweet Sentiment Analysis
Tweet Sentiment Analysis
course content

Cursusinhoud

Tweet Sentiment Analysis

book
Data Preprocessing

Data preprocessing refers to the techniques used to prepare raw data for further analysis or modeling. The goal of preprocessing is to clean, transform, and format the data so that it can be used effectively in an analysis or model.

Methods description

  • The .dropna() method in Pandas is used to remove rows or columns with missing values (NaN). Setting inplace=True modifies the DataFrame in place, meaning the changes are applied directly to the original DataFrame, and it returns None;

  • The .drop_duplicates() method is used to remove duplicate rows from the DataFrame. Setting inplace=True modifies the DataFrame in place, removing duplicate rows, and it returns None.

Taak

Swipe to start coding

  1. Drop NaNs from our dataset.

  2. Drop duplicates from our dataset.

Oplossing

Mark tasks as Completed
Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 1. Hoofdstuk 4
AVAILABLE TO ULTIMATE ONLY
Onze excuses dat er iets mis is gegaan. Wat is er gebeurd?
some-alt