Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Leer Data Preparation | Clustering Demystified
Clustering Demystified
course content

Cursusinhoud

Clustering Demystified

book
Data Preparation

Data preparation involves the process of transforming raw data into a format suitable for analysis or modeling. This includes tasks such as cleaning, handling missing values, encoding categorical variables, scaling, normalization, and feature engineering. The goal is to ensure that the data is accurate, complete, and structured in a way that facilitates effective analysis and modeling.

Methods description

  • .drop(): A DataFrame method used to remove columns or rows from a DataFrame. It takes the labels parameter to specify the columns or rows to be removed and the axis parameter to indicate whether to remove columns (axis=1) or rows (axis=0). The inplace parameter, if set to True, modifies the DataFrame in place;

  • .info(): A DataFrame method that prints a concise summary of a DataFrame, including the number of non-null values in each column and the data types of each column. It provides a quick overview of the DataFrame's structure and content.

Taak

Swipe to start coding

  1. Delete the following columns: "status_id", "status_published", "Column1", "Column2", "Column3", "Column4".

  2. Print the info of the dataset.

Oplossing

Mark tasks as Completed
Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 1. Hoofdstuk 4
AVAILABLE TO ULTIMATE ONLY
Onze excuses dat er iets mis is gegaan. Wat is er gebeurd?
some-alt