GAN vs VAE
Let's compare VAE and GAN architectures:
Was alles duidelijk?
Bedankt voor je feedback!
Sectie 3. Hoofdstuk 4
Vraag AI
Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.
Please enable JavaScript in your browser settings or update your browser.
Let's compare VAE and GAN architectures:
Bedankt voor je feedback!
Vraag AI
Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.
In this section, we'll start by understanding different types of generative models. We'll look into autoencoders, which transform data, GANs, which use a competitive approach, and diffusion networks, which spread out data. You'll learn how each model generates data differently, paving the way for further exploration in generative networks.
We will implement a simple Variational Autoencoder (VAE) using the MNIST dataset. We will build and train the VAE model, which includes designing the encoder and decoder networks, sampling from the latent space using the reparameterization trick, and optimizing the combined reconstruction and Kullback-Leibler divergence loss.
Now we will explore the generator-discriminator principle fundamental to GANs, implement a simple GAN model, and examine various GAN variations. Additionally, we will provide an overview of some existing state-of-the-art image generation models.