Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Data Preprocessing | Tweet Sentiment Analysis
Tweet Sentiment Analysis
course content

Conteúdo do Curso

Tweet Sentiment Analysis

bookData Preprocessing

Data preprocessing refers to the techniques used to prepare raw data for further analysis or modeling. The goal of preprocessing is to clean, transform, and format the data so that it can be used effectively in an analysis or model.

Methods description

  • The .dropna() method in Pandas is used to remove rows or columns with missing values (NaN). Setting inplace=True modifies the DataFrame in place, meaning the changes are applied directly to the original DataFrame, and it returns None;

  • The .drop_duplicates() method is used to remove duplicate rows from the DataFrame. Setting inplace=True modifies the DataFrame in place, removing duplicate rows, and it returns None.

Tarefa
test

Swipe to show code editor

  1. Drop NaNs from our dataset.

  2. Drop duplicates from our dataset.

Mark tasks as Completed
Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Data preprocessing refers to the techniques used to prepare raw data for further analysis or modeling. The goal of preprocessing is to clean, transform, and format the data so that it can be used effectively in an analysis or model.

Methods description

  • The .dropna() method in Pandas is used to remove rows or columns with missing values (NaN). Setting inplace=True modifies the DataFrame in place, meaning the changes are applied directly to the original DataFrame, and it returns None;

  • The .drop_duplicates() method is used to remove duplicate rows from the DataFrame. Setting inplace=True modifies the DataFrame in place, removing duplicate rows, and it returns None.

Tarefa
test

Swipe to show code editor

  1. Drop NaNs from our dataset.

  2. Drop duplicates from our dataset.

Mark tasks as Completed
Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Seção 1. Capítulo 4
AVAILABLE TO ULTIMATE ONLY
We're sorry to hear that something went wrong. What happened?
some-alt