Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Data Preprocessing | Tweet Sentiment Analysis
Tweet Sentiment Analysis
course content

Kursinnehåll

Tweet Sentiment Analysis

book
Data Preprocessing

Data preprocessing refers to the techniques used to prepare raw data for further analysis or modeling. The goal of preprocessing is to clean, transform, and format the data so that it can be used effectively in an analysis or model.

Methods description

  • The .dropna() method in Pandas is used to remove rows or columns with missing values (NaN). Setting inplace=True modifies the DataFrame in place, meaning the changes are applied directly to the original DataFrame, and it returns None;

  • The .drop_duplicates() method is used to remove duplicate rows from the DataFrame. Setting inplace=True modifies the DataFrame in place, removing duplicate rows, and it returns None.

Uppgift

Swipe to start coding

  1. Drop NaNs from our dataset.

  2. Drop duplicates from our dataset.

Lösning

Mark tasks as Completed
Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 1. Kapitel 4
AVAILABLE TO ULTIMATE ONLY
Vi beklagar att något gick fel. Vad hände?
some-alt