Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Declare Feature Vector and Target Variable | Clustering Demystified
Clustering Demystified
course content

Kursinnehåll

Clustering Demystified

book
Declare Feature Vector and Target Variable

A feature vector is a set of numerical features that represent an object or sample. In machine learning, a feature vector is used as input to a model, and it typically contains multiple features that describe the characteristics of the object.

A target variable, also known as a response or dependent variable, is the variable that the model is trying to predict. It is the output of the model, and it is typically a numerical or categorical value.

For example, in a supervised learning problem where we want to predict the price of a house, the feature vector might include things like the number of bedrooms, square footage, and neighborhood, while the target variable would be the price of the house.

Methods description

The indexing [] operator is used to select specific columns from the DataFrame. For example, data[column_name] retrieves the column named "column_name" from the DataFrame data.

Uppgift

Swipe to start coding

  1. Declare feature vector (entire data).
  2. Declare the target variable ("status_type" column).

Lösning

Mark tasks as Completed
Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 1. Kapitel 5
AVAILABLE TO ULTIMATE ONLY
Vi beklagar att något gick fel. Vad hände?
some-alt