Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Regexp Tokenizer | Identifying the Most Frequent Words in Text
Identifying the Most Frequent Words in Text
course content

Зміст курсу

Identifying the Most Frequent Words in Text

bookRegexp Tokenizer

RegexpTokenizer is a class in NLTK designed for tokenizing text data with the use of regular expressions. These expressions are powerful patterns capable of matching specific sequences in text, like words or punctuation marks.

The RegexpTokenizer is particularly advantageous for scenarios demanding customized tokenization.

Завдання
test

Swipe to show code editor

  1. Import the RegexpTokenizer for tokenization based on a regular expression pattern from NLTK.
  2. Create a tokenizer that splits text into words using a specific regular expression.
  3. Tokenize the lemmatized words to create a list of words.

Mark tasks as Completed
Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

RegexpTokenizer is a class in NLTK designed for tokenizing text data with the use of regular expressions. These expressions are powerful patterns capable of matching specific sequences in text, like words or punctuation marks.

The RegexpTokenizer is particularly advantageous for scenarios demanding customized tokenization.

Завдання
test

Swipe to show code editor

  1. Import the RegexpTokenizer for tokenization based on a regular expression pattern from NLTK.
  2. Create a tokenizer that splits text into words using a specific regular expression.
  3. Tokenize the lemmatized words to create a list of words.

Mark tasks as Completed
Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Секція 1. Розділ 9
AVAILABLE TO ULTIMATE ONLY
We're sorry to hear that something went wrong. What happened?
some-alt