Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Вивчайте Preliminary Analysis | Identifying Spam Emails
Identifying Spam Emails
course content

Зміст курсу

Identifying Spam Emails

test

Swipe to show menu

book
Preliminary Analysis

Checking for null values and duplicates is important in the data cleaning and preparation process because this helps to ensure the quality and accuracy of the data.

  • Null values can indicate missing or incomplete data and, if not handled properly, can lead to inaccuracies in any analysis or modeling performed on the data. For example, if a null value is present in a column that is used as a predictor variable in a machine learning model, the model will not be able to predict that data point.

  • Duplicates can also lead to inaccuracies in analysis, especially if they are not identified and removed. For example, if a data point is duplicated, it will be counted twice in any analysis performed, potentially skewing the results. Additionally, duplicate data can increase the size of the dataset and slow down any analysis or modeling performed on it.

Завдання
test

Swipe to begin your solution

  1. Check for any NaN (Not a Number) values in the DataFrame df.
  2. Drop the duplicates, as they are not useful for our analysis.

Рішення

Mark tasks as Completed
Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 1. Розділ 4
AVAILABLE TO ULTIMATE ONLY
We're sorry to hear that something went wrong. What happened?
some-alt