Зміст курсу
Tweet Sentiment Analysis
Words Count
Now we would like to explore the most represented number in our DataFrame. For this reason we will create a collection where we will store the most frequent words and then, plot it.
Methods description
from collections import Counter; import nltk
: Imports the Counter class from the collections module and the nltk library;from nltk.corpus import stopwords
: Imports a list of common stopwords from NLTK;nltk.download("stopwords")
: Downloads the stopwords dataset from NLTK;def remove_stopword(x)
: This defines a function namedremove_stopword
that takes a listx
as input and returns a new list with stopwords removed;return [y for y in x if y not in stopwords.words("english")]
: This comprehension expression filters out stopwords from the input listx
using the list of English stopwords from NLTK;Counter
: A class from the collections module used to count occurrences of elements in a list or iterable;stopwords.words("english")
: A method from NLTK that returns a list of stopwords for the English language;temp.most_common(25)
: Returns the 25 most common elements (words) and their counts from the Counter objecttemp
;temp.iloc[1:,:]
: Indexes a DataFrametemp
to exclude the first row and select all columns;temp.style.background_gradient(...)
: Applies a background gradient style to a DataFrametemp
.
Завдання
Swipe to show code editor
Create a collection to count word occurrences using the Counter
module:
- Remove stopwords from our tweets texts.
- Create a collection.
- Create a DataFrame with the newly created list.
- Change the background color to
"Blues"
.
Mark tasks as Completed
Перейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?
Дякуємо за ваш відгук!
Now we would like to explore the most represented number in our DataFrame. For this reason we will create a collection where we will store the most frequent words and then, plot it.
Methods description
from collections import Counter; import nltk
: Imports the Counter class from the collections module and the nltk library;from nltk.corpus import stopwords
: Imports a list of common stopwords from NLTK;nltk.download("stopwords")
: Downloads the stopwords dataset from NLTK;def remove_stopword(x)
: This defines a function namedremove_stopword
that takes a listx
as input and returns a new list with stopwords removed;return [y for y in x if y not in stopwords.words("english")]
: This comprehension expression filters out stopwords from the input listx
using the list of English stopwords from NLTK;Counter
: A class from the collections module used to count occurrences of elements in a list or iterable;stopwords.words("english")
: A method from NLTK that returns a list of stopwords for the English language;temp.most_common(25)
: Returns the 25 most common elements (words) and their counts from the Counter objecttemp
;temp.iloc[1:,:]
: Indexes a DataFrametemp
to exclude the first row and select all columns;temp.style.background_gradient(...)
: Applies a background gradient style to a DataFrametemp
.
Завдання
Swipe to show code editor
Create a collection to count word occurrences using the Counter
module:
- Remove stopwords from our tweets texts.
- Create a collection.
- Create a DataFrame with the newly created list.
- Change the background color to
"Blues"
.
Mark tasks as Completed
Перейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Секція 1. Розділ 8
AVAILABLE TO ULTIMATE ONLY