Зміст курсу
Stock Prices Prediction Project
Swipe to show menu
Check the Consistency of the Data
Dropping null
values and duplicates is important in data cleaning and preprocessing in Python because it ensures the integrity and accuracy of the data being analyzed. Null
values can lead to errors and bias in the analysis, and duplicates can skew the results and make them unreliable.
Removing null
values and duplicates can also improve the performance of the analysis and reduce the amount of storage space required. It is also important to understand that dropping null
values and duplicates also depends on data analysis, sometimes, it is required to keep null
values and duplicates in the dataset to get meaningful information.
Завдання
Swipe to show code editor
- Drop
null
values from the dataset; - Drop duplicates from the dataset.
Рішення
Mark tasks as Completed
Перейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?
Дякуємо за ваш відгук!
Секція 1. Розділ 6
AVAILABLE TO ULTIMATE ONLY