Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Check the Consistency of the Data | Stock Prices Prediction Project
Stock Prices Prediction Project
course content

Зміст курсу

Stock Prices Prediction Project

test

Swipe to show menu

book
Check the Consistency of the Data

Dropping null values and duplicates is important in data cleaning and preprocessing in Python because it ensures the integrity and accuracy of the data being analyzed. Null values can lead to errors and bias in the analysis, and duplicates can skew the results and make them unreliable.

Removing null values and duplicates can also improve the performance of the analysis and reduce the amount of storage space required. It is also important to understand that dropping null values and duplicates also depends on data analysis, sometimes, it is required to keep null values and duplicates in the dataset to get meaningful information.

Завдання
test

Swipe to show code editor

  1. Drop null values from the dataset;
  2. Drop duplicates from the dataset.

Рішення

Mark tasks as Completed
Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 1. Розділ 6
AVAILABLE TO ULTIMATE ONLY
We're sorry to hear that something went wrong. What happened?
some-alt