Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Вивчайте Decision Tree Comparison | Identifying Fake News
Identifying Fake News

book
Decision Tree Comparison

Let's now explore another model in our analysis. We will compare the results obtained with the Logistic Regression algorithm to those from the DecisionTreeClassifier. The pipeline will remain the same as in the previous chapter.

The key takeaway here is that in the world of Data Science, it is crucial to continuously try different approaches that may yield better results on your data.

Завдання

Swipe to start coding

  1. Initialize the DecisionTreeClassifier model.
  2. Train the model.
  3. Make predictions on the test set.
  4. Use the appropriate method to evaluate the model (compute accuracy score).

Рішення

from sklearn.tree import DecisionTreeClassifier

# Initialize the model
dt = DecisionTreeClassifier()

# Train the model
dt.fit(X_train, y_train)

# Make predictions
pred_dt = dt.predict(X_test)

# Evaluate the model (accuracy score)
dt.score(X_test, y_test) # This model performs better

Mark tasks as Completed
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 1. Розділ 6
AVAILABLE TO ULTIMATE ONLY
some-alt