Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Tokenization | Natural Language Handling
Identifying the Most Frequent Words in Text
course content

Зміст курсу

Identifying the Most Frequent Words in Text

book
Tokenization

Tokenization is a fundamental step in natural language processing, involving the division of text into individual words or tokens. This process is pivotal for making text data more accessible and manageable for analysis.

Key applications that benefit from tokenization include sentiment analysis, topic modeling, and machine learning. These techniques, when applied to tokenized text, can yield significant insights into the underlying themes, sentiments, and patterns present in the text data.

Tokenization's role is not just limited to breaking down text. It serves as a crucial step in standardizing text data for further analytical procedures, thereby making the overall process of natural language processing more efficient and effective. Furthermore, it facilitates the comparison and analysis of different texts by providing a uniform structure of words or tokens as a basis for comparison.

Завдання
test

Swipe to show code editor

  1. Import sentence and word tokenization functions from the NLTK library.
  2. Tokenize the text into words and sentences using the appropriate functions.

Mark tasks as Completed
Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 1. Розділ 3
We're sorry to hear that something went wrong. What happened?
some-alt