Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Train-Test Split | Detecting Spam
Identifying Spam Emails
course content

Зміст курсу

Identifying Spam Emails

book
Train-Test Split

The train-test split is a method used in machine learning to divide a dataset into two parts: a training set and a test set.

The training set is used to train a model, while the test set is used to evaluate the model's performance. This split is crucial as it allows the model to be tested on unseen data, helping to prevent overfitting.

Overfitting occurs when a model learns the training data too well, performing poorly on unseen data. Evaluating the model on a test set provides a better indication of how it will perform in real-world scenarios.

Additionally, this approach helps to understand the model's generalization ability and allows for the tuning of hyperparameters by comparing performance across different test sets.

Завдання
test

Swipe to show code editor

  1. Import the train_test_split() function.
  2. Use this function to split the newly created X and y variables into train and test sets.

Mark tasks as Completed
Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 1. Розділ 8
We're sorry to hear that something went wrong. What happened?
some-alt