Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Вивчайте Descriptive Statistics | Normality Check
The Art of A/B Testing

book
Descriptive Statistics

Before moving on to visualizing the distribution, it makes sense to look at the descriptive statistics of each parameter in the dataset.

Among the key parameters we need are the following:

  • Number of observations;

  • Average value;

  • Standard deviation;

  • Median;

  • Minimum value;

  • Maximum value.

Let's get on with it. We have the results of a controlled experiment for two groups of users.

Preliminary A/A testing showed that the experiment was adequate. Let's display our files:

# Import pandas
import pandas as pd

# Read .csv file
df_control = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/c3b98ad3-420d-403f-908d-6ab8facc3e28/ab_control.csv', delimiter=';')

# Print head of the control dataframe
print(df_control.head())
12345678
# Import pandas import pandas as pd # Read .csv file df_control = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/c3b98ad3-420d-403f-908d-6ab8facc3e28/ab_control.csv', delimiter=';') # Print head of the control dataframe print(df_control.head())
copy

In this table, we have 4 columns:

'Impression' - the number of views of the product page; 'Click' - the number of transitions to the product page; 'Purchase' - the number of product purchases; 'Earning' - profit from the sale of the product.

# Import pandas
import pandas as pd

# Read .csv file
df_test = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/c3b98ad3-420d-403f-908d-6ab8facc3e28/ab_test.csv', delimiter=';')

# Print head of the test dataframe
print(df_test.head())
12345678
# Import pandas import pandas as pd # Read .csv file df_test = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/c3b98ad3-420d-403f-908d-6ab8facc3e28/ab_test.csv', delimiter=';') # Print head of the test dataframe print(df_test.head())
copy

Now let's calculate the descriptive statistics and display them on the screen:

# Import pandas
import pandas as pd

# Read .csv files
df_control = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/c3b98ad3-420d-403f-908d-6ab8facc3e28/ab_control.csv', delimiter=';')
df_test = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/c3b98ad3-420d-403f-908d-6ab8facc3e28/ab_test.csv', delimiter=';')

# Calculate descriptive statistics using .agg method
control_descriptive = df_control['Impression'].agg(['count', 'mean', 'std', 'median', 'min', 'max']).round(2)
test_descriptive = df_test['Impression'].agg(['count', 'mean', 'std', 'median', 'min', 'max']).round(2)

# Concat the results of aggregations
result = pd.concat([control_descriptive, test_descriptive], axis=1)
result.columns = ['Control', 'Test']

print(result)
12345678910111213141516
# Import pandas import pandas as pd # Read .csv files df_control = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/c3b98ad3-420d-403f-908d-6ab8facc3e28/ab_control.csv', delimiter=';') df_test = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/c3b98ad3-420d-403f-908d-6ab8facc3e28/ab_test.csv', delimiter=';') # Calculate descriptive statistics using .agg method control_descriptive = df_control['Impression'].agg(['count', 'mean', 'std', 'median', 'min', 'max']).round(2) test_descriptive = df_test['Impression'].agg(['count', 'mean', 'std', 'median', 'min', 'max']).round(2) # Concat the results of aggregations result = pd.concat([control_descriptive, test_descriptive], axis=1) result.columns = ['Control', 'Test'] print(result)
copy

We use the .agg() method for the convenience of calculating descriptive statistics. This method is called aggregation. Aggregations are a way of collapsing, summarizing, or grouping data. Also, we use the .concat() method to conveniently display the aggregation results on the screen.

The averages seem pretty close. Or not?

Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 2. Розділ 2

Запитати АІ

expand

Запитати АІ

ChatGPT

Запитайте про що завгодно або спробуйте одне із запропонованих запитань, щоб почати наш чат

some-alt