Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Data Preparation | Clustering
Clustering Demystified
course content

Зміст курсу

Clustering Demystified

book
Data Preparation

Data preparation involves the process of transforming raw data into a format suitable for analysis or modeling. This includes tasks such as cleaning, handling missing values, encoding categorical variables, scaling, normalization, and feature engineering. The goal is to ensure that the data is accurate, complete, and structured in a way that facilitates effective analysis and modeling.

Methods description

  • .drop(): A DataFrame method used to remove columns or rows from a DataFrame. It takes the labels parameter to specify the columns or rows to be removed and the axis parameter to indicate whether to remove columns (axis=1) or rows (axis=0). The inplace parameter, if set to True, modifies the DataFrame in place;

  • .info(): A DataFrame method that prints a concise summary of a DataFrame, including the number of non-null values in each column and the data types of each column. It provides a quick overview of the DataFrame's structure and content.

Завдання
test

Swipe to show code editor

  1. Delete the following columns: "status_id", "status_published", "Column1", "Column2", "Column3", "Column4".

  2. Print the info of the dataset.

Mark tasks as Completed
Switch to desktopПерейдіть на комп'ютер для реальної практикиПродовжуйте з того місця, де ви зупинились, використовуючи один з наведених нижче варіантів
Все було зрозуміло?

Як ми можемо покращити це?

Дякуємо за ваш відгук!

Секція 1. Розділ 4
We're sorry to hear that something went wrong. What happened?
some-alt