Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Check the Consistency of the Data | Stock Prices Prediction Project
Stock Prices Prediction Project
course content

Kursusindhold

Stock Prices Prediction Project

book
Check the Consistency of the Data

Dropping null values and duplicates is important in data cleaning and preprocessing in Python because it ensures the integrity and accuracy of the data being analyzed. Null values can lead to errors and bias in the analysis, and duplicates can skew the results and make them unreliable.

Removing null values and duplicates can also improve the performance of the analysis and reduce the amount of storage space required. It is also important to understand that dropping null values and duplicates also depends on data analysis, sometimes, it is required to keep null values and duplicates in the dataset to get meaningful information.

Opgave

Swipe to start coding

  1. Drop null values from the dataset;
  2. Drop duplicates from the dataset.

Løsning

Mark tasks as Completed
Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 1. Kapitel 6
AVAILABLE TO ULTIMATE ONLY
Vi beklager, at noget gik galt. Hvad skete der?
some-alt