Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Box Plots | Gaining Insights with Data Visualization
Gaining Insights with Data Visualization
course content

Contenido del Curso

Gaining Insights with Data Visualization

bookBox Plots

Box plots are useful for visualizing the distribution of a single numeric variable and identifying potential outliers. They are particularly effective for comparing the distribution of data across different categories or groups.

A box plot consists of a box, which encloses the first and third quartiles, and whiskers, which typically extend from the quartiles to the minimum and maximum values within 1.5 times the interquartile range. These components make box plots an excellent tool for summarizing data distributions clearly and concisely.

Tarea
test

Swipe to show code editor

  1. Import the seaborn library with the sns alias.
  2. Import the pyplot module of the matplotlib library with the plt alias.
  3. Generate three arrays with 100 observations each, with standard deviations (std) ranging from 1 to 4, exclusive.
  4. Use the appropriate seaborn function to create a box plot.
  5. Display the resulting plot.

Mark tasks as Completed
Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Box plots are useful for visualizing the distribution of a single numeric variable and identifying potential outliers. They are particularly effective for comparing the distribution of data across different categories or groups.

A box plot consists of a box, which encloses the first and third quartiles, and whiskers, which typically extend from the quartiles to the minimum and maximum values within 1.5 times the interquartile range. These components make box plots an excellent tool for summarizing data distributions clearly and concisely.

Tarea
test

Swipe to show code editor

  1. Import the seaborn library with the sns alias.
  2. Import the pyplot module of the matplotlib library with the plt alias.
  3. Generate three arrays with 100 observations each, with standard deviations (std) ranging from 1 to 4, exclusive.
  4. Use the appropriate seaborn function to create a box plot.
  5. Display the resulting plot.

Mark tasks as Completed
Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
Sección 1. Capítulo 2
AVAILABLE TO ULTIMATE ONLY
We're sorry to hear that something went wrong. What happened?
some-alt