Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Smoothing | Fundamentals of Image Manipulation with Python
Fundamentals of Image Manipulation with Python
course content

Contenido del Curso

Fundamentals of Image Manipulation with Python

bookSmoothing

In OpenCV, Gaussian Blur is a smoothing filter used to reduce noise and detail in an image. This filter is based on the Gaussian function, which is bell-shaped and diminishes as the distance from the center increases. The cv2.GaussianBlur() function applies this type of blur to an image.

The function requires three parameters:

  • the image to be blurred;

  • the kernel size (specified as a tuple of width and height);

  • the standard deviation in the x and y directions.

If the standard deviation is set to zero, it is calculated from the kernel size. The kernel size determines the area used to calculate the blur, while the standard deviation controls the amount of blur.

Tarea
test

Swipe to show code editor

  1. Apply Gaussian blue to the image "image1.jpg".

Mark tasks as Completed
Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

In OpenCV, Gaussian Blur is a smoothing filter used to reduce noise and detail in an image. This filter is based on the Gaussian function, which is bell-shaped and diminishes as the distance from the center increases. The cv2.GaussianBlur() function applies this type of blur to an image.

The function requires three parameters:

  • the image to be blurred;

  • the kernel size (specified as a tuple of width and height);

  • the standard deviation in the x and y directions.

If the standard deviation is set to zero, it is calculated from the kernel size. The kernel size determines the area used to calculate the blur, while the standard deviation controls the amount of blur.

Tarea
test

Swipe to show code editor

  1. Apply Gaussian blue to the image "image1.jpg".

Mark tasks as Completed
Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
Sección 1. Capítulo 7
AVAILABLE TO ULTIMATE ONLY
We're sorry to hear that something went wrong. What happened?
some-alt