Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Apprendre Check the Consistency of the Data | Stock Prices Prediction Project
Stock Prices Prediction Project
course content

Contenu du cours

Stock Prices Prediction Project

book
Check the Consistency of the Data

Dropping null values and duplicates is important in data cleaning and preprocessing in Python because it ensures the integrity and accuracy of the data being analyzed. Null values can lead to errors and bias in the analysis, and duplicates can skew the results and make them unreliable.

Removing null values and duplicates can also improve the performance of the analysis and reduce the amount of storage space required. It is also important to understand that dropping null values and duplicates also depends on data analysis, sometimes, it is required to keep null values and duplicates in the dataset to get meaningful information.

Tâche

Swipe to start coding

  1. Drop null values from the dataset;
  2. Drop duplicates from the dataset.

Solution

Mark tasks as Completed
Switch to desktopPassez à un bureau pour une pratique réelleContinuez d'où vous êtes en utilisant l'une des options ci-dessous
Tout était clair ?

Comment pouvons-nous l'améliorer ?

Merci pour vos commentaires !

Section 1. Chapitre 6
AVAILABLE TO ULTIMATE ONLY
We're sorry to hear that something went wrong. What happened?
some-alt